

KOMCZBEKC

Swath Bathymetry 1: GeoSwath Plus Technology and data examples

Swath Bathymetry 1: GeoSwath Plus Technology and data examples

- System overview
- Technology phase measuring bathymetric sonar
- System specifications
- Data examples

/ 2 / 16-Sep-09 THE FULL PICTURE

GeoSwath Plus Bathymetric Sonar

Wide Swath Bathymetry and Co-registered Side Scan

Data Products – Bathymetry and Side Scan

Deployment

The technology

161

Phase measuring bathymetric sonar

Phase Measuring Bathymetric Sonar

Scatterer

Also called:
Interferometric Multibeam
Bathymetric Side-Scan
Vernier Interferometer
Wide Swath Sonar

Transducer Head

Transducer design

Multi-element receive array measuring phase differences. In the GeoSwath Plus case the primary array consists of two transducers mounted to a "V" plate. Each transducer contains multiple ceramic staves:

Bottom stave is transmitter, multiple receive elements.

Uses phase differences to measure angle.

Result: time series of angles (and amplitudes)

Phase Measuring

Transmit geometry

- Sides scan transmit geometry
- Bathymetry and amplitude (side scan) data products

Looking at the Raw Data

Standard data filtering

- Amplitude filtering
- Statistical filtering
- Binning

Data filters

Unprocessed and Processed Data

Standard deviation of data

Data density at different resolutions

Sounding Density Comparison

Sounding Density Comparison in 5m Water Depth

All data view of single swath, 50m per side range setting, 5 Knots vessel speed

Single swath binned at 50cm without interpolation or smoothing, and sun illuminated

Results: High Data Density Ensures Provable Survey Quality

Bin size \approx sonar footprint \approx min. feature size. Data density > (or >>) 10 per bin.

The Technology Benefits

- Easy to deploy on small vessels of opportunity
 - = reduced mobilisation costs
- Very wide swath width in shallow waters
 - = increased productivity,
 - = easier survey planning
 - = survey top of all shoals in survey area
- Compact, robust transducers and electronics
 - = able to be deployed on smaller vessels
- Co-registered side-scan with bathymetry
 - = '2 surveys in one pass', more applications

Robust transducers with no active components

= low cost of purchase and maintenance

System specifications

Hardware and software options

GeoSwath Plus frequency options

Frequency:	125kHz	250kHz	500kHz
Txd dims:	60x25x8cm	30x15x6cm	15x10x4cm
Max depth:	200m	100m	50m
Usual use:	0m - 200m capability 20m - 200m	0m – 100m capability 2m-50m	0m – 50m capability 1m-40m
Found on:	Larger Survey Ship	Small Vessel	AUV/ROV

GeoSwath Plus Performance

- Bathymetry and true geo-referenced Side Scan
- Coverage up to 12 times depth
- up to 200 m depth performance
- Along track resolution: up to 0.9 degrees
- Across track resolution: up to 0.02 degrees
- 5000+ data points/fan
- Ultra high resolution
- IHO SP 44, Special Order
- Sediment classification
- Turnkey System and interface to Hypack, Quinsy, ...
- Windows XP

Ancillary sensors

- Altimeter
 - Single beam echo sounder, quality control
 - Tritech PA series
- Mini Sound Velocity profiler on transducers mounting
 - Valport MiniSVS
 - GPS Positioning
 - RTK allows use of height instead of tidal information
 - Heading
 - Gyro, GPS, Combined
 - MRU
 - · Pitch, roll, heave
 - Tide
 - Gauge or computed
 - Sound Velocity Profiler

Software

- GeoSwath Plus software
 - Concise proprietary software package included with system
 - GeoTexture optional package for side scan normalisation and classification
- Hypack
 - United States Army Corps of Engineers
 - Halcrow plc
- QPS QinSy
 - Jan de Nul
 - Reijkwaterstaat
- CARIS
 - United States Army Corps of Engineers
- Fledermaus
 - Netsurvey (Halcrow)

GeoSwath Plus software - set up

GeoSwath Plus software – acquisition / processing

GeoSwath Plus software - calibration

GeoSwath Plus software – gridding / mosaicing

GeoSwath Plus software – 3D visualisation

GeoTexture software – Side Scan Normalisation and Classification

Hypack

Hypack

Fledermaus

bathymetry

uncertainty

Coloured by Depth

Showing rejected data

Coloured by Line

Caris HIPS

- Implement processing and QC tools that reduce acquisition to processing ratios (Rate of Effort)
- Error Modeling and Propagation
- Apply Corrections
 - Tide, Geodetic, Sound speed, Motion
- Surface Creation to Locate Errors
- Data Cleaning
 - CUBE, Statistical, IHO, Area based
- *Designate Soundings
 - **Quality Control**
 - 3-D Fly Thru, Profiles, IHO QC

QPS - QINSY

CUBE

Slide from Brian Calder seminar presentation.

Data examples

Phase measuring bathymetric sonr

/ 39 / 16-Sep-09 THE FULL PICTURE

Yarmouth Road

Water depth: 7m

Swath width: 70m

Area: 1000x700m

Sand waves: 4 cm

Shallow Survey 05 Common Dataset

Shallow Survey 05 Common Dataset

Attitude: Good attitude measurement means consistent survey data - for example POS MV performance in turns (50cm uninterpolated data at 50m slant range)

Constant 40 m line spacing – 2 m water depth

Data courtesy of University of Rhode Islands location between Fire Island and Long Island, NY

Bridge crossing

Pipeline inspection

Port survey

Port of Trondheim, Norway Maintenance Dredging & Object Detection

Rocky outcrops - bathymetry

Rocky outcrops – side scan

500 kHz boat mounted system

500 kHz boat mounted system

500 kHz boat mounted system

Marine Habitat Mapping

Texture classification

End moraine in Swiss Lake

Rivers

Canals and harbours

Kongsberg Maritime

