Product description

Hipap®

High precision Acoustic Positioning Model 501/451/351/101

HiPAP®

High Precision Acoustic Positioning

Model 501/451/351/101

This document describes the High Precision Acoustic Positioning (HiPAP®) systems. The HiPAP® systems are designed for optimal positioning of subsea objects in both shallow and deep water.

The HiPAP® systems have four different models.

The HiPAP[®] systems use both Super Short Base Line (SSBL) and Long Base Line (LBL) positioning techniques.

Document history

Rev	Date	Written by	Checked by	Approved by
-	18.01.2013	JEF/AJ	SER	JEF
F	Removed APC information. Updated drawings.			

Copyright

© 2013 Kongsberg Maritime AS.

All rights reserved. The information contained in this document remains the sole property of Kongsberg Maritime. No part of this document may be copied or reproduced in any form or by any means, and the information contained within it is not to be communicated to a third party, without the prior written consent of Kongsberg Maritime.

Disclaimer

Kongsberg Maritime endeavours to ensure that all information in this document is correct and fairly stated, but does not accept liability for any errors or omission.

Warning

The equipment to which this manual applies must only be used for the purpose for which it was designed. Improper use or maintenance may cause damage to the equipment and/or injury to personnel. The user must be familiar with the contents of the appropriate manuals before attempting to operate or work on the equipment. Kongsberg Maritime disclaims any responsibility for damage or injury caused by improper installation, use or maintenance of the equipment.

Support

All Kongsberg Maritime products: Phone 24 hour: +47 33 03 24 07 E-mail: km.support@kongsberg.com

Kongsberg Maritime AS

Strandpromenaden 50 P.O.Box 111 N-3191 Horten, Norway Telephone: +47 33 03 41 00 Telefax: +47 33 04 47 53 **www.kongsberg.com** subsea@kongsberg.com

Contents

1	ABOUT THIS DOCUMENT	1
1.1	Contents	1
1.2	List of abbreviations	1
2	HIPAP® SYSTEM – SHORT DESCRIPTION	2
2.1	Systems	2
	HiPAP® 501	. 3
	HiPAP® 451	. 3
	HiPAP® 351	. 4
	HiPAP® 101	. 4
2.2	Operating modes	5
2.3	APOS	5
2.4	Sensors	5
3	SYSTEM CONFIGURATIONS	6
3.1	HiPAP® systems	6
3.2	Single HiPAP® system	6
3.3	Redundant HiPAP® system	6
3.4	Dual HiPAP® system	7
	Accuracy improvement	. 7
	Redundancy improvement.	. 8
	HiPAP with Transceiver unit Model x81	.9
	HIPAP with Transceiver unit Model x21	10 11
		10
4	SYSTEM FUNCTIONS	12
4.1	Main functions	12
	List of main functions	12
	Ontional HiPAP® system functions	12 16
-		•••
5	SYSTEM UNITS	22
5.1	Operator Station	22
	Standard operator station	23
	Operator console	23 24
5.2	Ethernet switch/Converter	24
5.3	Fibre Splice Box	24
5.4	Transceiver units	24
5.5	Responder Driver Unit (option)	25
5.6	Transducers	25
5.7	Hull units	26
	A HiPAP® hull unit is equipped with the following sub units:	26

6	EXTERNAL INTERFACES	28
6.1	Position outputs	28
6.2	Surface navigation	28
6.3	Motion Sensor Unit	28
6.4	Heading sensor	28
6.5	Attitude sensors	29
6.6	Interface specification	29
7	TRANSPONDERS	30
7.1	cNODE [®] series	31
7.2	MST series	32
8	POSITIONING PRINCIPLES AND PROCESSING	33
8.1	SSBL positioning	33
8.2	LBL positioning	35
	Calibration	35
	Positioning	35
83	Combined SSBL and LBL positioning	37 38
8.4	HiPAP® processing	
8.5	Cymbal acoustic protocol	40
	Technology	40
	Range capability and reduced impact from noise	40
	Range accuracy	40
	Directional measurements	40
	Multi-path capability	41
	Position update rate – MultiPing	41
	Power management – lifetime	41
	Data Link with variable data rate – adaptable	41
	Integrated navigation and data link	41
	cNODE [®] - Modeless transponder	41
9	MEASUREMENT COMPENSATION	42
9.1	Roll - pitch - heading compensation	42
9.2	Ray bending compensation	42
9.3	Transducer alignment	43
10	APPLICATIONS	46
10.1	Dynamic Positioning (DP) reference	46
10.2	2 Subsea survey and inspection	46
10.3	3 Rig and Riser monitoring	46
10.4	Acoustic Blow Out Preventer (BOP) control	46
10.5	5 Construction work and metrology	47

11	TECHNICAL SPECIFICATIONS	49
11.1	SSBL accuracy	49
Т	ransducer reference point	50
H	LiPAP® 501	51
L L	liPAP® 451	52
L L	11PAP® 351 1;DAD@ 101	52 54
11.0		J4 51
11.2	LBL accuracy	
	Range capabilities	
11.4	Computer	
11.5	Keyboard	58
11.6	Trackball	59
11.7	Display	59
11.8	Responder Driver Unit (option)	59
11.9	Fibre Splice Box	59
11.10	Transceiver units	60
C	Common data	60
11.11	HiPAP® hull units	61
11.12	Mounting flange	62
11.13	Gate valve	62
11.14	Raise and lower motor	63
11.15	Hoist Control Unit	63
11.16	Remote Control Unit	64
11.17	Transducer units	64
12	DRAWING FILE	65
12.1	Outline dimensions	65
C	Computer –desktop mounting and outline dimensions	66
K	Keyboard	67
1	9" Display	68
К Т	Responder Driver Unit (option)	69
ו ד	ransceiver Unit Model x21	70 71
т Г	NN 500 mounting flange w/gate valve	71
Ē	N 350 mounting flange w/gate valve	73
H	Ioist Control Unit	74
R	emote Control Unit	75
H	IiPAP® HL 2180	76
H	HiPAP® HL 3770	77
E	hрар® HL 4570 Ерар® Ш. 4120	78
L L	IIГАГ Ś ПL 0120	19

1 ABOUT THIS DOCUMENT

1.1 Contents

This document covers the complete HiPAP® Model 501/451/351/101 systems. It provides a general description of the systems, each module, the functions and technical specifications. It also includes outline dimension drawing of the main units.

1.2 List of abbreviations

ACC	Acoustic Control Commander
ACS	Acoustic Control Subsea
APOS	Acoustic Positioning Operator Station
AUV	Autonomous Underwater Vehicles
BOP	Blow Out Preventer
DP	Dynamic Positioning
GNSS	Global Navigation Satellite System
GPS	Global Positioning System
HiPAP®	High Precision Acoustic Positioning
LBL	Long Base Line
MPT	Multifunction Positioning Transponder
MST	Mini SSBL Transponder
MULBL	Multi-User Long Base Line
ROV	Remotely Operated Vehicle
SPT	SSBL Positioning Transponder
SSBL	Super Short Base Line

2 HIPAP® SYSTEM – SHORT DESCRIPTION

2.1 Systems

The HiPAP® systems are designed to provide accurate positions of subsea objects such as Remotely Operated Vehicles (ROVs), autonomous underwater vehicles (AUVs), towed bodies or fixed seabed transponders. To achieve the accuracy, the HiPAP® system uses unique signal processing techniques. This technique enables narrow transmitter and receiver beams to be generated in all directions within the lower half of the transducer using electronic beam control.

The HiPAP® Model 501/451/351/101 systems are the second generation HiPAP® systems. These models have a new transceiver unit and a new signal processing algorithms for Cymbal processing.

Cymbal is KM's new acoustic protocol for positioning and communication.

All HiPAP® systems; HiPAP® 501, HiPAP® 451, HiPAP® 351 and HiPAP® 101 have common software and hardware platforms, and thereby offer the same kind of additional functionality and options.

- The HiPAP® 501, HiPAP® 451, HiPAP® 351 systems are medium frequency systems operating from 21 kHz to 31 kHz.
- The HiPAP® 101 system is a low frequency system operating from 10 kHz to 15.5 kHz.

HiPAP® 501

The HiPAP® 501 has a full spherical transducer body including 241 transducer elements. This model has close to full accuracy in the half sphere sector and is the preferred system where the best possible performance is required. The HiPAP® 501 can also track targets above the half sphere sector. The use of *very narrow beams* provides:

- High accuracy
- Long range capabilities
- Good noise reduction capabilities
- Good multipath suppression

The HiPAP® 500 transducer has a diameter of 392 mm and will be installed with the 500 mm gate valve.

HiPAP® 451

The HiPAP® 450 transducer is the same unit as the HiPAP® 500 transducer. The system has Transmitter/Receiver boards for only 46 elements, similar to the HiPAP® 351 system.

The HiPAP® 451 system has the same operational and technical performance as the HiPAP® 351 system.

 \rightarrow Refer to HiPAP® 351 system description on page 4.

The HiPAP® 451 uses the same hull units as the HiPAP® 501.

 \rightarrow Refer to HiPAP® 501 system description on page 3.

Upgrade to HiPAP® 501

The HiPAP® 451 can be upgraded to full HiPAP® 501 performance. This is done by:

- Insert 6 additional Transmitter / Receiver Boards in the transceiver unit which is fully prepared for this.
- APOS software upgrade.

HiPAP® 351

The HiPAP® 351 has a spherical transducer with a cylindrical body including 46 transducer elements. This model has good accuracy in the \pm 60° sector and is suited for operations where the major positioning objects are within this sector. The total coverage is \pm 80°.

The use of narrow beams provides:

- High accuracy
- Long range capabilities
- Good noise reduction capabilities
- Good multipath suppression

The HiPAP® 350 transducer has a diameter of 320 mm and it will be installed with a 350 mm gate valve. Installing the system with a 500 mm gate valve, will enable an easy upgrade to a HiPAP® 501 system.

HiPAP® 101

The HiPAP® 101 has a planar transducer array with a cylindrical body including 31 transducer elements. This model has good accuracy in the \pm 60° coverage sector and is suited for operations where the major positioning targets are within this sector.

The HiPAP® 100 transducer has a diameter of 452 mm and will be installed with the 500 mm gate valve.

2.2 Operating modes

- **SSBL** Positions various targets by directional and range measurements, using a unique processing technique that provides very high accuracy.
- LBL Positions the surface vessel by simultaneously use of combined directional and range measurements to transponders in an LBL array.
- **MULBL** Positions the surface vessel in an MULBL transponder array.
- **Telemetry** acoustic communication to:
 - transponders for LBL calibration, metrology
 - measurements and set-up
 - Instrument units and BOP systems.

2.3 APOS

The HiPAP® system is operated from the APOS, which is a Windows based software used to operate the HiPAP® system. The system can be operated from one single APOS station or from a wide number of APOS operator stations connected on a network.

2.4 Sensors

The HiPAP® system has a wide range of interfaces to sensors from different manufacturers.

The HiPAP® system needs high accuracy heading, roll and pitch sensors to be interfaced. The accuracy of the sensors has direct impact on the position. Examples of search sensors are Seapath and MRU.

3 SYSTEM CONFIGURATIONS

3.1 HiPAP® systems

A HiPAP® system may be configured in several different ways, from a single system to a redundant system with several operator stations. Some configurations are described below.

There are two different transceiver types and several different hull units available. The HiPAP® x81 transceiver unit can be used for all HiPAP® transducers, while the compact HiPAP® x21 transceiver unit can be used for HiPAP® 351 and HiPAP®101.

3.2 Single HiPAP® system

The single HiPAP® system has one transceiver and hull unit, but it may have one or more operator stations.

 \rightarrow See the system diagram on pages 9 and 10.

3.3 Redundant HiPAP® system

The redundant HiPAP® system has two or more operator stations and two or more transceivers and hull units. All transceivers are accessible from all operator stations. The redundant system will operate with 2 transponders, one on each transducer, or two LBL arrays. The redundant system shall still be operational after one single failure in the system.

 \rightarrow See the system diagram on page 11.

[→] See the system diagrams with all types of transducers on pages 9, 10 and 11.

3.4 Dual HiPAP® system

A dual system applies for the HiPAP® 501 only. HiPAP® is designed to operate two sets of transceivers / transducers, both operated from the same operator station(s).

 \rightarrow See the system diagram on page 11.

The dual system uses both transducers to measure the position of one single target (transponder / responder) by controlling beam forming and directional measurement separately for each system in parallel. This means that both systems will measure and calculate a position for the same reply pulse from the transponder.

If the signal is lost due to noise or air bubbles on one of the transducers, it may still be possible to receive it on the other one.

A position estimator will use the position information from both systems to estimate one optimal transponder position. Each system calculates a variance for its measurements, determined from the known system accuracy and the standard deviation of the measurements. The position estimator receives the position and the variance from the two systems, and calculates the weighted mean of the two positions. The variances are used as the weights.

The quality control function uses variance data, standard deviation and position difference to perform a quality control of the position. If the variance and the position difference are outside a pre-set limit, a warning will be displayed for the operator.

For the dual configuration, a synchronisation line between the transceivers is required.

The following paragraphs indicate the benefits of a dual system:

Accuracy improvement

The improvement factor from 1 to 2 transducers is $\sqrt{2}$. This is based on the statistical improvements when using two independent systems.

Redundancy improvement

The two transducers will normally be installed at different locations onboard. One transducer may then have a better location with respect to noise environments and reflections than the other. The computed position will be a weighted mean of these two measurements, if one of the systems fails to receive a reply, the other system may still receive it and the position will still be computed.

HiPAP with Transceiver unit Model x81

HiPAP with Transceiver unit Model x21

HiPAP redundant system

This illustration shows an example of a HiPAP redundant system.

4 SYSTEM FUNCTIONS

A HiPAP® system consists of a wide range of functions. A function is selected by the operator. The basic systems have standard functions included, to ensure normal operation. The systems may be delivered with additional options selected from the system option list.

4.1 Main functions

The main functions in the HiPAP® system are described below. The system may be configured with one or several of these functions. They will appear in the systems main menu.

List of main functions

The list below shows which functionality each of the function includes. The "Reg. No." (Registration Number) is the unique identification for this function.

Example; the Reg. No. for APOS Base version is 886 - 212745.

HiPAP® system software

Description	Reg. No.
APOS Base Version	886-212745
Base for running all applications, including:	
• Sound velocity profile function	
• Ethernet interface for position data	
• Serial line, RS-422 for transceiver interface	
• Serial line, RS-422 for position data	
Transponder telemetry for SPT/MPT transponders including:	
• Set transmit power level	
• Set receive sensitivity	
• Set Pulse length	
Change channel	
Enable/Disable	

Description	Reg. No.
Transponder release	
• Read battery status	
• Read sensor data	
Position and angle alarm	
APOS software for HiPAP [®] or HPR 400 providing alarm for transponder position and riser angle alarm	
APOS Depth sensor interface	
APOS software for interfacing a depth sensor for depth compensation of position. Suitable for ROV or Tow fish positioning	
GNSS Interface	
APOS software with interface to GNSS for geographical data on transponders and vessel positions. Also used for SSBL and LBL array calibration. The APOS clock may be synchronised to 1PPS from the GNSS receiver.	
HiPAP® - Emergency channels A&B	
The HiPAP® transceiver can use emergency channels A and B used on diving bells.	
Position and angle audible alarm	
APOS software for HiPAP [®] providing alarm for transponder position and riser angle alarm.	
Gives an audible alarm using the PC sound output. An external PC loudspeaker is required.	
HiPAP® 501 SSBL function	886-212746
NOTE: Export license is required.	
APOS software for HiPAP® SSBL operation including:	
Transponder positioning	
Responder positioning	
• Serial interface for gyro and VRU or attitude sensor (maximum 3 units total)	
• SSBL simulator for training	

HiPAP Model 501/451/351/101

Description	Reg. No.
HiPAP® 451 SSBL function	886-220734
NOTE: Export license is required.	
APOS software for HiPAP [®] 450 SSBL operation including:	
Transponder positioning	
Responder positioning	
 Serial interface for gyro and VRU or attitude sensor (maximum 3 units total) 	
SSBL simulator for training	
Upgradeable to full HiPAP® 501 SSBL function by installing software functions in existing operator station and controller and hardware units as described below.	
HiPAP® 351 SSBL function	886-214927
NOTE: Export license is required.	
APOS software for HiPAP [®] SSBL operation including:	
• Transponder positioning	
Responder positioning	
• Serial interface for gyro and VRU or attitude sensor (maximum 3 units total)	
SSBL simulator for training	
HiPAP® 101 SSBL function	334043
NOTE: Export license is required.	
APOS software for HiPAP [®] SSBL operation including:	
• Transponder positioning	
Responder positioning	
• Serial interface for gyro and VRU or attitude sensor (maximum 3 units total)	
• SSBL simulator for training	

Description	Reg. No.
HiPAP® 351P SSBL function	356186
NOTE: Export license is required.	
APOS software for HiPAP [®] SSBL operation including:	
• Transponder positioning	
Responder positioning	
• Serial interface for gyro and VRU or attitude sensor (maximum 3 units total)	
SSBL simulator for training	
New acoustic protocol used for both positioning of subsea transponder in SSBL/LBL modes and data communication to and from transponders.	347211
The Cymbal technology utilizes Direct Sequence Spread Spectrum (DSSS) signals for positioning and data communication. The data communication speed is variable and can be adapted to the acoustic communication conditions; noise and multi-path. DSSS is a wide band signal. Due to the higher energy in its acoustic pulses the Cymbal protocol provides:	
• Higher position accuracy	
• Extreme accurate range measurements	
 Longer range capabilities 	
• Higher data rate communication	

HiPAP Model 501/451/351/101

Description	Reg. No.
LBL function	886-212748
APOS software for Long Base Line operation using HPR 408/418 or HiPAP [®] , including:	
• Calibration of transponder array in local grid	
 Positioning of vessel/ROV in LBL array 	
Necessary transponder telemetry	
LBL simulator for training	
 Geographical position output if transponder locations/origin are entered in geo co-ordinates 	
This function requires that the system already has the	
"APOS Base Version", reg. no: 212745 and "HiPAP® SSBL function" Reg. No.: <i>Dependant on model</i> .	
Positioning of an ROV in LBL requires an HPR 400S unit.	
NOTE: Requires export license.	
HiPAP [®] MULBL function	886-212750
APOS software for HiPAP [®] MULBL operation including:	
 Calibration of transponder array in local grid 	
 Positioning of vessel in MULBL array 	
• Necessary transponder telemetry	
 Setting of fast LBL update rate through the master transponder 	
This function requires that the system already has both the HiPAP® SSBL and LBL functions, Reg. No.: 212746 and 212748	
MULBL transponder array data	886-212751
APOS files containing transponder array data for MULBL	

Optional HiPAP® system functions

Description	Reg. no
Beacon Mode	886-212752
APOS software for HiPAP [®] or HPR 400 beacon and depth beacon	
operation	

Description	Reg. no
Inclinometer Mode	886-212753
APOS software for HiPAP [®] or HPR 400 inclinometer transponder operation	
Compass Transponder Mode	886-212754
APOS software for HiPAP [®] or HPR 400 compass transponder operation	
GEO LBL Calibration	886-212755
APOS software for HiPAP [®] or HPR 400 for calibration of LBL array in geographical co-ordinates. In positioning mode the position may be reported in geographical co-ordinates.	
LBL Transponder Positioning mode	886-212757
APOS software for HiPAP [®] or HPR 400 for use of MPT transponders to be positioned in an LBL network.	
(old name was "Transponder Range Positioning")	
This mode requires that the system already has the LBL function: 212748	
SAL Reference	334053
APOS software for HiPAP [®] or HPR 400 for calculation displaying a vessel's distance (numeric value) relative to a known coordinate in a UTM coordinate system.	
Dual HiPAP [®] Increased SSBL Accuracy function	886-212758
APOS and HiPAP® software for enabling increased SSBL accuracy in dual HiPAP® configurations. Provides simultaneous measurement of transponder position by use of two HiPAP® transducers.	SW option
Provides two separate and one integrated position	
Requires two complete HiPAP [®] transceivers/ transducers, and HiPAP [®] SSBL function	
APOS Additional Operator Station Function	886-212759
Software and hardware for allowing several Operator Stations for HiPAP [®] and HPR 400 systems.	
APOS Upgrade software	886-212760
Upgrade from HSC400 software to APOS software, including old functionalities.	
This upgrade may require a new monitor and a new computer and keyboard (will be additionally priced).	

Description	Reg. no
APOS External synch	886-212761
APOS software for synchronising HiPAP [®] or HPR 400 transceivers to external equipment.	
APOS ACS BOP function	886-212765
APOS software in the HPR or HiPAP system for telemetry to ACS 4xx / ACS 3xx system used on BOP.	
Telemetry to ACS 300 only available on HPR 400 systems.	
APOS ACS OLS function	886-212766
APOS software for telemetry to ACS 300 system used on OLS.	
Telemetry to ACS 300 only available on HPR 400 systems.	
APOS STL function	886-212767
APOS software for HiPAP [®] or HPR 400 systems for STL fields special functions including:	
• Scanning of up to 9 MLBE depth and position	
 Positioning of STL buoy 	
• Scanning of transponder battery status	
 Graphics showing STL connection point 	
HiPAP [®] Transponder Relay Function	886-215837
Enables use of relay-function, relay-transponder frequency allocation, operator interfaces and displays functionality.	
SAL Tension & Yoke monitoring	886-215939
For Single Anchor Loading stations.	
APOS software HiPAP [®] or HPR 400 systems for showing Tension and Yoke including:	
Graphical presentation of yoke-angle	
Graphical presentation of tension	
• Table for converting inclination angle to tension (this option is field dependent).	
APOS Field transponder array data	886-212768
APOS files containing transponder array data for offshore loading fields. Price is per upgrade.	

Description	Reg. no
APOS Remus SSBL Function	356185
APOS software for HiPAP [®] SSBL positioning of REMUS AUV transponders.	
This function requires that the system already has both the HiPAP® SSBL function (reg. no.: 212746 or 886-214927 or 886-220734 or V101010) and the HiPAP® Cymbal acoustic protocol function (Reg. No.: 347211).	
APOS Trainer - HiPAP®	881-217543
The product is suitable for training, planning and demonstration purposes and consists of:	
A CD containing full APOS software with all options except OLS. Defined with one HiPAP [®] and one HPR 400 transceiver.	
APOS Instruction Operating Manual 319957 (one binder of paper).	
Includes Sound velocity ray-trace calculation and displaying of deflection based on velocity profile input.	
Includes Long Base Line array planning tool.	
Includes data output for testing telegram interfaces to external computers (transmits standard HPR/HiPAP® telegrams).	
The APOS can be operated as a normal HiPAP [®] and a simulator replaces transceiver and transponders.	
The program requires a computer with CD-ROM player, a running Windows NT / Windows 2000 / Windows XP program, a monitor with minimum 800x600 resolution, a network card, and a TCP-IP protocol needs to be defined.	

Description		Reg. no	
APOS Remus SSBL	368775		
APOS software for Hi transponders. This op- wide band transponde This function requires HiPAP® SSBL function Cymbal acoustic prote	iPAP® SSBL positioning of REMUS AUV tion is for positioning Remus low frequency ers. that the system already has both any of the tions (for HiPAP 101) and the HiPAP® pocol function.		
New Transponder			
Remus AUV Lightweight, compact, two-man portable RUV for cosstal applications. Highly uersatile, modular RUV for 600, t500 or 3000 meter applications. Deep-water workhorse RUV for operations in up to 6000 meters of water.	Transponder data Signal Frequency Serial no. Image: Signal FSK Low Channel DR1_LFB Image: Signal Medium DR1_LFB DR2_LFB Image: Signal Medium Transponder DR3_LFB Image: Signal Image: Signal Medium DR3_LFB Golfication Sensor Medium MPT DR3_LFB Image: Signal Image: Sensor Image: Sensor MPT DR4_LFB Image: Sensor Image: Sensor Image: Sensor MPT DT4A_LF Image: Sensor Image: Sensor Image: Sensor Image: Sensor MPT DT4A_LF Image: Sensor Image: Sensor Image: Sensor Image: Sensor Image: Sensor MPR DT4F_LF Image: Sensor Image: Sensor		
APOS Benthos SSBI APOS software for Hi frequency transponder transponder replies ar	369712		
This function requires that the system already has both any of the HiPAP® SSBL functions (for HiPAP 101) and the HiPAP® Cymbal acoustic protocol function			

Description		Reg. no
Description New Transponder	Transponder data Serial no. Serial no. Image: Serial no. Im	Reg. no
	Next Cancel Help	

5 SYSTEM UNITS

A HiPAP® system consists of the following main units:

- Operator station
- Transceiver unit
- Hull unit with transducer and hoist control
- Gate valve and mounting flange

Each transducer requires a dedicated hull unit arrangement and transceiver unit. One operator station can control several transceiver units.

5.1 Operator station

The HiPAP® system is operated from one or several operator stations, depending on the actual system configuration. The operator station is identical for all HiPAP® models. One station can operate several HiPAP® transducers and of various types.

The Operator station comprises of:

- Computer
- Keyboard
- Trackball
- Display

The computer runs on the Microsoft Windows operating system. The user interface is a graphical user interface, designed as a standard Windows application.

A Keyboard and trackball is used to operate the system. The screen is divided into 3 windows in which the operator can select several different views. Typical views are graphical position plot, numerical data, inclination and roll, pitch and heading. A normal display configuration is shown in the following figure.

One system may have one or several operator stations, which communicates on an Ethernet. One of the operator stations will be the Master. This is selected by the operator(s).

OS1:Master Controller		HiPAP 500 - Oil-field		18. desember 2000 14:46:10
File View Positioning LBL Array Control System User Configure Utility	y Help			
		I I I I Trym B21 B26 B27	Image: B31 Image: B32 Image: B57-1 Image: B58-2 Image: B62 Image: B63	0 B65
Measured Position data:	493390	493490	493590	493690 49379
Item Position Depth				6334680
There N. 6224427 7				0331000
11Ym M: 0334437.7				
E: 493591.4 0.0				
LBL: Tot. Done Used RMS resid				
16 16 16 0.3				
Loc Range Residual Status				
1 844.9 -0.1 OK				
2 843.7 0.1 OK		\odot	\odot	6334580
3 835.7 -0.0 OK		2	3	
5 830.4 0.1 OK				
4 824 0 -0 0 OK				
Dot 0.0 -0.0 0K				
ppo oro oro or				
Transc. Head Roll Pitch		`		(224480
HiPAP 131.0 -1.0 0.6				6334480
UTM North UTM Nort			Trum	
				\odot
	•			4
	1			
				6334380
14:36:08 14:38:08 14:40:08 14:42:08 14:44:08 14:46:08				
[Time]				
UTM East UTM East				
Trym_M 455000				
			\odot	
			5	
				622,4000
				6334280
14:36:08 14:38:08 14:40:08 14:42:08 14:44:08 14:46:08				-
[Time]	<u> </u>			<u>_</u>
For Help, press F1			HPAP: Naviga	kion N:6334639.11 E:493827.28

Figure 1 APOS presentation

Operator Station configuration

A HiPAP® system may be configured with the Operator Station in two ways:

- Stand-alone computer, monitor, keyboard and trackball.
- Operator console, integrated with the Dynamic Positioning (DP).

Standard operator station

Computer

The HiPAP® Operator Station contains computer hardware as processor, hard drive, DVD-RW player and external interface boards. The computer is continuously being updated with new hardware.

The computer may be mounted on a desktop attached to the colour monitor, or in a 19" rack.

Display

The colour display, the flat-screen 19" TFT is a general purpose, micro-processor based and digitally controlled display unit. The display can be installed in several ways; desktop, roof, panel or 19" rack.

Keyboard

The keyboard is a PS/2 keyboard. It has US layout and includes back-lighting. The keyboard can be mounted on the computer or be placed on a desktop.

Trackball

A standard off the shelf unit is used.

Operator console

If the HiPAP® system is delivered together with a Kongsberg DP system the operator station may be a standard Kongsberg DP console.

5.2 Ethernet switch/Converter

The Ethernet switch/Converter has the following functions:

- Interface Optical fibre to transceiver
- Responder Driver Unit
- •

5.3 Fibre Splice Box

Fibre Splice Box with up to eight (8) ports. This box is used to splice the system fibre-optic cable.

5.4 Transceiver units

Two types of HiPAP® transceiver units are available:

- 1 HiPAP® x81 Transceiver Unit, for HiPAP® 501, 451, 351 or 101
- 2 HiPAP® x21 Transceiver Unit, for HiPAP® 351 or 101

The transceiver models have identical function. The x21 can be used for HiPAP® 351 and HiPAP® 101, while x81 can be used for all models. The unit contains power supplies, transmitter and receiver boards and interface to the optical fibre link.

The unit is designed for bulkhead mounting close to the hull unit.

The transceiver units are equipped with different filter boards for HiPAP® 100 and HiPAP® 501/541/351.

5.5 Responder Driver Unit (option)

The Responder Driver Unit provides responder trigger signals to responders.

The unit can be used for HiPAP® transceiver unit x81 and x21. The Responder Driver Unit is a stand-alone unit. The unit is interfaced to the HiPAP® system via an Ethernet, and to the HiPAP® transceiver unit for sync. The APOS controls which drive is being active while the sync/timing is received from the HiPAP® transceiver.

5.6 Transducers

HiPAP® 500 transducer	The HiPAP® 500 transducer has a full spherical transducer body including 241 transducer elements, the elements covers its entire surface area except for a small cone around the "north-pole". The large number of elements enables narrow receiver beams to be generated. The transducer is mounted on the hull unit.
HiPAP® 450 transducer	The HiPAP® 450 transducer is the same unit as the HiPAP® 500 but only the 46 lower sector elements of the sphere are "activated" and in use.
HiPAP® 350 transducer	The HiPAP® 350 transducer has a spherical transducer with a cylindrical body including 46 transducer elements, the elements covers its' $+/-60^{\circ}$ cone pointing downwards. The large number of elements enables narrow receiver beams to be generated. The transducer is mounted on the hull unit.
HiPAP® 100 transducer	The HiPAP® 100 transducer has a planar transducer array with a cylindrical body including 31 transducer elements. This model has good accuracy in the \pm 60° coverage sector and is suited for operations where the major positioning targets are within this sector.

5.7 Hull units

The HiPAP® hull unit enables the transducer to be lowered, by either local or remote control, through the vessel's hull to a depth sufficient to minimise the effects of noise and air layers below the vessel. The hull unit is installed on top of a gate valve, which can be closed during maintenance (cleaning) of the transducer.

The hull unit also holds the guide-rail arrangement for keeping the transducer exactly aligned with the vessels reference line.

A complete specified HiPAP® hull unit depends on:

- Type of transceiver unit
- Type of hull unit
- Type of transducer

The following are available:

Type of transceiver unit (available types)	Type of hull unit (available types)	Type of transducer (available types)
Model x21	HL 2180	HiPAP® 500/450
Model x81	HL 3770	(same transducer)
	HL 4570	HiPAP® 350
	HL 6180	HiPAP® 100
	(The numbers indicates the	
	hoist length in mm)	

 \rightarrow An overview of available HiPAP assemblies, see table on page 57.

A HiPAP® hull unit is equipped with the following sub units:

Gate valves

There are two different gate valves available, one with 500 mm aperture and one with 350 mm aperture. The valve is handwheel operated, delivered with electrical interlock for prevention of lowering the transducer into the gate. As an option the gate vale can be delivered with an electrical actuator (electrical gate valve operation).

Mounting flange

There are two different flanges available one with 500 mm aperture and one with 350 mm aperture. Standard height is 600 mm. Optional length is available on request.

Hoist Control Unit

This unit holds the power supplies and control logic for the hoist and lower operation of the hull unit. It also has a local control panel for local control of the hoist / lower operation.

Hoist Control Unit with Ethernet interface

APOS and HiPAP® mk II support remote control of the Hull Unit Hoist and the Gate Valve. A new control unit for the hoist control and/or the gate valve is required. In addition this must be enabled in the HiPAP® program.

Remote Control Unit

This unit is normally mounted close to the display unit in the operation room. It allows remote control of the hoist and lower operation of the hull unit.

6 EXTERNAL INTERFACES

6.1 Position outputs

The HiPAP® system can be interfaced to other computers allowing them to process the position data for various applications. The system is flexible in the way it interfaces other computes. Several binary and ASCII formats are available on serial line and Ethernet using UDP protocol. A dual Ethernet is available for secure DP operations. An accurate time-tagged position output is available if the system is interfaced to a GNSS and synchronised to 1PPS.

 \rightarrow Refer to the NMEA 0183 sentences description on APOS online help.

6.2 Surface navigation

The HiPAP® system can be interfaced to a surface navigation system. As standard the system uses Global Navigation Satellite System (GNSS). When GNSS is interfaced, a number of features will become available; UTM grid on display, UTM position of transponders, transducer alignment and geographical calibration of LBL arrays.

6.3 Motion Sensor Unit

The motion sensor unit is interfaced to the HiPAP® system transceiver unit. The system can thereby automatically compensate the transducer position, for the vessel's roll and pitch movements. The HiPAP® system can use the same as the Dynamic Positioning (DP) system (if one is fitted). The sensor may or may not be a part of the Kongsberg Maritime delivery. In any case, the unit is documented separately by the applicable manufacturer.

6.4 Heading sensor

The heading sensor (gyro compass) provides the HiPAP® system with the vessel's heading relative to north. The HiPAP® system may then provide transponder coordinates relative to north. It is also used to update the position filter and tracking algorithms as the vessel changes heading.
6.5 Attitude sensors

These sensors integrate rate gyros, accelerometer and GPS to provide an accurate roll, pitch, heave and heading output. These sensors are superior to traditional gyros and motion sensor. The HiPAP® system may be interfaced to such sensors.

6.6 Interface specification

The HiPAP® system has several interface formats available. These are described in the *Attitude formats description* document.

→ *Refer to the Attitude formats description, on APOS online help.*

7 TRANSPONDERS

The position calculation is based on range and/or direction measurements from the onboard transducer to the subsea transponder(s). For the HiPAP® system, there is a wide range of transponders available. The various transponders models have different depth rating, source level, lifetime, beam pattern and function.

There are two main transponder series:

- cNODE[®] series which are using Cymbal acoustic protocol.
- MST series which are using traditional frequency shift (FSK) modulation technique

More details are described in section on page 40.

For details, please see the *Product Specification* for each of the transponder models.

7.1 cNODE® series

The cNODE[®] series consist of three main models:

- **Maxi transponder** a full size transponder with large battery capacity well suited for seabed deployment and long life operation.
- **Midi transponder** a short transponder with good battery capacity well suited for installation on structures etc.
- **Mini transponder** a small sized transponder suited for ROV mounting.

The cNODE[®] transponders have a flexible design based on a standard housing which can have various transducers, release mechanism and sensor modules attached.

7.2 MST series

The MST is an SSBL mini transponder suited for ROV operation and where the size of the transponder can be a limiting factor. The transponder models cover various water depths. The MST series consists of the following models:

- MST 319 rated for 1000 m water depth
- MST 324 rated for 2000 m water depth
- MST 342 rated for 4000 m water depth

All units have a rechargeable battery, can operate in responder mode and can also be externally powered.

8 POSITIONING PRINCIPLES AND PROCESSING

The HiPAP® system uses two different principles for positioning; the SSBL and the LBL. These two principles have different properties that make the system flexible for different applications.

- The SSBL principle is based on a range and direction measurement to one transponder, while the LBL principle is based on range measurements to minimum three transponders on the seabed.
- The position accuracy in SSBL is proportional to the slant range to the transponder, while the LBL accuracy is determined by the geometry of the seabed transponders array and the vessel that is being positioned.
- The SSBL principle, due to its simple operation, is the obvious choice if the accuracy is good enough for the application performed. The LBL principle is the obvious choice if the SSBL accuracy is not good enough for the application performed, though it requires a more complex operation.
- Cymbal is a signal processing technique used for all positioning modes. Cymbal utilizes Direct Sequence Spread Spectrum (DSSS) signals for positioning and data communication. DSSS is a wide band signal. The Cymbal protocol provides new characteristics for both positioning and data communication.

8.1 SSBL positioning

In SSBL, the system calculates a three-dimensional subsea position of a transponder relative to a vessel-mounted transducer. The position calculation is based on range and direction measurements to one transponder. The onboard transducer transmits an interrogation pulse to a subsea transponder, which then answers with a reply pulse. When using a responder the interrogation is replaced by a hard wire trigger connection.

• The onboard system will measure the time from the interrogation to the reply pulse is detected and use the sound velocity to compute the range.

• The transponder position is presented both numerical and graphically on the operator station. Only one onboard SSBL type transducer is necessary to establish this position.

Using a pressure sensor in the subsea transponder can increase position and depth accuracy. The pressure is measured and transmitted to the surface HiPAP® system using acoustic telemetry. The depth is then used in the algorithms for establishing the 3D position. The system can also read the depth via a serial line input from a pressure sensor. Simultaneous use of many transponders is made possible by using individual interrogation and reply frequencies.

Figure 2 SSBL principle

8.2 LBL positioning

Calibration

The LBL principle is based on one vessel-mounted transducer, and normally 4 - 6 transponders on the seabed. This seabed transponder array must be calibrated before LBL positioning operations can begin. The calibration shall determine the transponder's positions in a local geographical co-ordinate frame.

The HiPAP® system supports two calibration techniques:

1. Baseline measurements

This technique uses automatic calibration functions in the HiPAP® system. This allows all the ranges to be measured and made available by acoustic telemetry communication between the transponders and the vessel's system. Based on the baseline measurements and initial positions of the transponders, the calibrated transponder positions are computed.

2. Runtime calibration

To use this technique, the system is run in LBL positioning mode, using the SSBL positions of the seabed transponders for the vessel LBL position calculation. The runtime calibration function logs the measurements. Based on this, new optimised seabed transponder positions will be computed. This technique makes the baseline measurements redundant. If the baselines measurements are done, they are also used in the calculations. The calibration is performed only once prior to positioning operation, since the transponders will remain in the same location during the operation.

Positioning

When the transponder positions are known, positioning of the surface vessel can begin. All the seabed transponders will be interrogated simultaneously, and each will respond with its specific reply signal. The LBL system will then calculate the ranges from the individual transponders. By using the calibration data together with the calculated ranges in software algorithms, the vessel or an ROV can be positioned. ROV positioning requires an HPR 400S transceiver to be mounted on the ROV.

- The system can take the depth from an ROV-mounted pressure sensor via a serial line. By using this depth in the computation, it will increase the position accuracy of the ROV.
- The range capabilities of a medium frequency LBL system will be approximately the same as those of an SSBL system.
- LBL positioning will give better position accuracy at greater water depths, but is more complex to operate, and it needs more transponders than the SSBL.
- LBL TP positioning method uses one transponder to measure the ranges to the transponders in the array and telemetry the data to the surface vessel, which computes the position of the transponder.

Figure 3 LBL principle

Multi-User LBL positioning

Several individual vessels and ROV units can now position themselves using the same seabed transponder array. The system and principle has the following main advantages:

- Provides high position accuracy (comparable to standard LBL).
- A small number of transponders serve all vessels and ROVs.
- Secures high position update rate (down to approx. 2 seconds), which is essential in DP operations.
- Avoids transponder frequency collisions when vessels are working in the same area (all vessels are "listening" only).

A transponder array is deployed and calibrated by use of subsea baseline measurements. One transponder is used as the Master in the positioning phase. The other transponders are called the Slaves.

The Master transponder acts as a beacon. It starts a positioning sequence by doing the steps described below. This is done regularly with an interval set by telemetry from one of the vessels.

- The Master interrogates the Slaves.
- The Master transmits its individual transponder channel to be received by the vessels/ROVs positioning in the array.
- Each Slave transponder receives the interrogation from the Master and transmits its individual reply channels after a turnaround delay.

A MULBL system positioning in the array listens for the individual channels transmitted by the master beacon, and by the Slave transponders. When they are received, the system uses its knowledge about their positions in the TP array to calculate the differences in range to the transponders in the TP array. The time difference between the Master interrogation and the start of the reception of the pulses at the system is unknown. It has to be calculated together with the position of the vessel or ROV. All vessels to use the MULBL array need the coordinates of the transponders and the channel numbers, which will be distributed of a file.

Figure 4 Multi-User LBL positioning

8.3 Combined SSBL and LBL positioning

The combined SSBL/LBL system uses an onboard multielement transducer. The system may operate as an SSBL system and as an LBL system simultaneously.

As an example, the vessel may be positioned relative to the seabed using LBL while an SSBL transponder/responder on an ROV is positioned relative to the vessel. The vessel is displayed relative to the array origin and the ROV relative to the vessel. The combined system will also use the measured directions in 2D together with the measured ranges in the LBL positioning. The combined measurement gives a robust system with increased accuracy. An LBL solution is achievable when only two transponder replies are detected.

8.4 HiPAP® processing

HiPAP® SSBL processing	_	The HiPAP® system determines the position of a subsea target (transponder or responder) by controlling a narrow reception beam towards its location. The system uses a digital beam-former, which takes its input from all the transducer elements.
	_	The system uses a number of wide fixed beams to generate an approximate position for the target. Once this is achieved, it uses data from all the elements on the hemisphere facing the target to compute the narrow reception beam and optimise the directional measurement.
	_	The range is measured by noting the time delay between interrogation and reception. The system will control the beam dynamically so it is always pointing towards the target. The target may be moving, and the vessel itself is affected by pitch, roll and yaw. Data from a roll/pitch sensor is used to stabilise the beam for roll and pitch, while directional data from a compass is input to the tracking algorithm to direct the beam in the correct horizontal direction.
	_	The HiPAP® transceiver can operate with up to 56 transponders simultaneously. The data is sent to the computer.
HiPAP® LBL processing	_	This mode is similar to the HiPAP® SSBL processing, but the transceiver positions up to 8 LBL transponders for each single LBL interrogation. Both ranges and directions to the transponders are measured.
HiPAP® MULBL processing	_	This mode is similar to the HiPAP® LBL processing, but the transceiver does not interrogate the MULBL transponder array, it only listen for the replies from the array. The transceiver can listen for to 8 LBL transponders. The direction to the transponders and the time difference between the received replies is transmitted to the computer.
HiPAP® Telemetry processing	_	The unit transmits acoustic telemetry messages, and receives and decodes the acoustic telemetry message from the transponder. The data is sent to the computer.

8.5 Cymbal acoustic protocol

Cymbal is the new acoustic protocol used for both positioning of subsea transponder in SSBL/LBL mode and data communication to and from transponders.

Technology

Cymbal utilizes Direct Sequence Spread Spectrum (DSSS) signals for positioning and data communication. The data communication speed is variable and can be adapted to the acoustic communication conditions; noise and multi-path. DSSS is a wide band signal.

The Cymbal protocol provides new characteristics for both positioning and data communication.

Range capability and reduced impact from noise

Cymbal protocol can transmit more energy in each positioning pulse. Compared to the current HiPAP® 500 this extra energy will provide higher position accuracy at low signal to noise ratio. It will also provide longer range capabilities. This improvement in energy is 5dB.

Range accuracy

The Cymbal signal gives range accuracy in the order of 0.01 m. Error contribution from sound velocity and ray bending not included.

Directional measurements

In SSBL operation, the accuracy of directional measurement is the main contributor to the position accuracy. The HiPAP® 501 has new and improved algorithms for directional computation when using Cymbal. At low signal to noise ratio the system will be more robust.

Number of channels

The Cymbal protocol has increased number of unique codes for transponder channels compared to the current system. At present there are 50 unique transponder channels.

Multi-path capability

The Cymbal protocol is designed to have good multi path properties. The processing technique allows signals to and from the transponder to overlap and still be able to have a correct detection.

Position update rate – MultiPing

New function that allows higher position updates rate in SSBL mode. Details not defined.

Power management – lifetime

The Cymbal protocol has a power management function that can command the transponder to adjust transmit power to save batteries. This is done automatically by the system.

Data Link with variable data rate – adaptable

The Cymbal protocol supports variable data rate and high reliability level. The obtainable data rate is defined by the signal to noise level and multi-path conditions. By default the system uses data rates that will secure long range and high reliable communication.

Integrated navigation and data link

Data that needs to be sent to and from a transponder will be interleaved between the positioning signals. The cNODE[®] transponder can any time send status and data to the HiPAP[®] and the other way around. If the cNODE[®] transponder detects low battery level, this can be directly sent to HiPAP[®] and displayed to the operator

cNODE® - Modeless transponder

The Cymbal protocol is able to use transponders in SSBL and LBL mode without changing the mode of the transponder. A transponder in an LBL array can by the operator be deselected from the LBL positioning and directly be used in SSBL mode. No data telemetry is required.

The cNODE[®] transponders can simultaneously listen for a Cymbal and an HPR400 channel interrogation. By this, vessels not having Cymbal protocol can use the same transponders

9 MEASUREMENT COMPENSATION

9.1 Roll - pitch - heading compensation

In order to compensate for the vessels roll / pitch / heading movements, vertical reference sensors and heading sensors are interfaced. Data from these sensors are used to compute position data that is relative to horizontal level and to north. The absolute accuracy and the standard deviation of the position are very dependent of the roll / pitch / heading sensors performance. Especially when working at great water depths the roll / pitch / heading error contribution is significant and when working at long horizontal range the heading error contribution is significant. This compensation is used in all positioning modes.

The accuracy of the attitude data is of crucial significance for the total accuracy of the HiPAP® system, and the error from the attitude sensor will add to the error of the HiPAP® system.

Example:

A roll or pith error of 0.25 degrees will give an error of 4.4 m at 1000 m depth, and an error of 13 m at 3000 m depth - while a roll or pitch error of 0.05 degree will give respectively 0.9 m and 2.6 m.

9.2 Ray bending compensation

Positions calculated from the raw measurements are influenced by variable sound velocity through the water column. The variable sound velocity causes an error in both range measurements and the angular measurements. By use of a sound profile, the system can correct these errors.

Figure 5 Sound profile - APOS presentation

The sound velocity values may be measured by a probe and transferred to the system. If the depth of the target (transponder) is known either by depth sensor in the transponder or by an ROV depth sensor, these data can be transferred to the system and they will be used in the compensation. The range calculation is compensated for the error caused by different sound velocities in the water column, and for the extra propagation path caused by the ray bending. The angular measurements are compensated for the ray bending. The compensation is used in all positioning modes.

9.3 Transducer alignment

	After a HiPAP® installation, it is necessary to determine a number of offsets between various sensor reference points and axes. These are:
Vertical angular	The offset between transducer axis and roll / pitch sensor axis.
Horizontal angular	The offset between roll / pitch sensor and heading reference.
Horizontal distance	The offset between transducer location and reference point.
	The principles for these alignment adjustments are based on the position of a fixed seabed transponder relative to the vessel and the geographical position of the vessel.

In order to simplify and improve the quality of the alignment scenario, the alignment function in APOS is used. By logging the vessel position from GNSS along with the measured HiPAP position of a seabed transponder, the program computes the alignment parameters. The normal procedure is to locate the vessel at four cardinal points and on top of the transponder with four headings.

Immediately the alignment parameters can be computed and automatically be transferred to the APOS alignment parameters. No manual transfer is needed. The results from the alignment are shown both numerical and graphically on the APOS. An example is shown in the two figures below.

Calculation data—			_ Sound veloci	ty [m/s]		
Time # positions used ii	12:48 n calibration	32 000824 385	l Transducer	nstallation 1506.8	Calculated	1-sigma
Distance residual	Max value rms value	9.86 m 4.12 m	Mean	1520.1	1532.5	0.5
Std Dev Tp Pos	North East	1.54 m 2.42 m	Transducer p	arameters-		
	Depth	2.90 m		Installation	Calculated	1-sigma
			Roll	-0.54 °	-0.78	0.01
Transponder boxe	d-in position—		Pitch	-0.18 °	0.17	0.01
Northings	42	58600.51 m	Gear	175.00 °	170.10	0.02
Eastings	3	60813.28 m				
Depth		1537.61 m	Forward	6.20 m		
1-sigma error ellips	se 0.2	1 m, 0.21 m 52 *	Starboard	7.30 m		
Depth 1-sigma ac	curacy	0.50 m		_	Update	
		_				
Print	Save to fi	e			Close	

Figure 6 Result of transducer alignment - APOS presentation

(Cd5885)

Figure 7 Transponder positioning - APOS presentation

The figure shows the positions at the seabed transponder in UTM co-ordinates after the compensation values are determined and applied. The various symbols are used so readings from different locations easy can be separated from each other.

10 APPLICATIONS

10.1 Dynamic Positioning (DP) reference

The position data can be used by a DP system as the reference signals for keeping the vessel in the desired position. High position accuracy and reliability ensure a secure and stable reference input to the DP systems. SSBL and LBL systems may be used.

10.2 Subsea survey and inspection

Positioning of ROVs carrying instruments for survey and inspection is another important application for the HiPAP® system. The ROV position relative to the vessel is integrated with the position from surface navigation to provide a geographical position of the ROV. In this application, a responder is suitable.

Tracking towed bodies for similar applications may also be done. In survey applications, a best possible geographic position is wanted. To obtain this, sound velocity and depth (pressure) sensor input to the HiPAP® system may be used.

10.3 Rig and Riser monitoring

The HiPAP® system can be used to monitor the drill rig position relative to the well/Blow Out Preventer (BOP). It can also be used with inclinometer transponders to monitor the BOP and riser inclination. For HSC 400, interface to electrical riser angle measurement is available. Used with the Acoustic Control Subsea (ACS 400) it can be used for BOP.

10.4 Acoustic Blow Out Preventer (BOP) control

The HiPAP® system is also used for transmitting and receiving acoustic telemetry command with high security. This is used for acoustic BOP control, which includes BOP valve operation and monitoring critical functions by reading subsea status information and sending this information to the operator onboard the vessel.

A separate unit, the ACS 400, is required on the BOP stack. The ACS 400 contains electronics and batteries for interfacing the BOP.

A portable control unit, the Acoustic Control Commander (ACC 400), is also available. The ACC 400 contains electronics and batteries for operating the BOP functions.

10.5 Construction work and metrology

The HiPAP® system forms a powerful platform for performing several tasks for positioning and acoustic data communication for construction and metrology work:

- LBL array calibration
- Box-in of locations
- Telemetry of sensor data
- Highly accurate baseline measurements

The cNODE[®] transponder has high performance range measurement and data communication capabilities. A variety of sensors are available for cNODE[®] and the sensor data is available to the operator from the HiPAP® system. The accuracy of baseline measurements obtained by use of cNODE[®] transponders can be in the order of 0.01 m. However, to obtain this kind of accuracy it is essential that the operator has full control of the sound velocity. The figure below shows an APOS screen dump showing the statistics from a LBL calibration. The RMS residuals are calculated to be 0.03 m. There were 7 transponders in the array.

LBL Array data									
Locations Tp Array & Tp parameters Measured baselines Position setup Geographical calibration									
Transponder array:	Measured I	baseline	s data:						
Super Array	Master	Slave	Status	Time	Range	Expected	#Meas	Std Resid	<u>~</u>
Array 1	2	1	OK	12:0	288.676	294.566	1	-0.02	
	2	1	ОК	12:0	288.677	294.566	1	-0.02	
	2	1	ОК	12:0	288.675	294.566	1	-0.02	
	2	1	ОК	12:0	288.676	294.566	1	-0.02	
	2	1	ОК	12:0	288.669	294.566	1	-0.03	
	2	1	ОК	12:0	288.666	294.566	1	-0.03	
Master All locs 🗾	2	1	ОК	12:0	288.665	294.566	1	-0.04	
	2	1	ОК	12:0	288.662	294.566	1	-0.04	
	12	1	0K	12-0	205 971	208 826	1	-0 04	
- Measurement						Calc	ulation		
Range window			Num	ber 8	-	Time	: 13:23:5	58 090708	
Calculated distance: 100.00m of meas.									
Initial In Mi	n 90.	00		Aeasure bo	oth ways	Bms	residual :	0.03m	
offset									
IMC	x '''	.00		Start n	neasure			Calculate	
					OK I				
					UK				eip

11 TECHNICAL SPECIFICATIONS

11.1 SSBL accuracy

The angular figures are errors in both axis, elevation and orthogonal.

The specification is based on:

- Free line of sight from transducer to transponder.
- No influence from ray-bending.
- Signal to Noise ratio in water in the 250 Hz receiver band.
- No error from heading and roll / pitch sensors.

Transducer reference point

The reference points shown below are the origin for the position measurements.

The elevation and orthogonal angles are used in the accuracy curves.

HiPAP® 501

	HiPAP 5	01 Single	system	HiPAP 501 Dual system			
	S/N [o	lB rel. 1µ	Pa]	S/N [dB rel. 1µPa]			
	20	10	0	20	10	0	
Angular Accuracy [°] (At 0° elevation)	0.12	0.18	0.3	0.085	0.13	0.21	
Range Accuracy [m]	0.1	0.1	0.15	0.1	0.15	0.15	
Cymbal Range Accuracy [m]	0.02	0.02	0.02	0.02	0.02	0.02	
Receiver beam [°]	10		10				
Coverage [°]		+/-100			+/-100		

Accuracy curves – HiPAP® 501

The figure above shows the accuracy as a function of elevation angle. The signal to noise ratio of 10 dB is in the bandwidth.

The figure above shows the accuracy as a function of signal to noise ratio. The elevation and the orthogonal angles are 0° (at vertical).

HiPAP® 451

The HiPAP® 500 transducer is used, and it has the same technical performance as the HiPAP® 351.

 \rightarrow Refer to HiPAP® 351 SSBL accuracy.

HiPAP® 351

HiPAP® 351/451	S/N [dB rel. 1µPa]				
Single system	20	10	0		
Angular Accuracy, 1σ [°] (At 0° elevation)	0.18	0.23	0.4		
Range Accuracy, 1 ₅ [m]	0.1	0.15	0.2		
Cymbal Range Accuracy, 1σ [m]	0.02 0.02 0.02				
Receiver beam [°]	15				
Coverage [°]	+/-80				

The elevation and orthogonal angles are used in the accuracy curves.

Accuracy curves – HiPAP® 351

The figure above shows the accuracy as a function of elevation angle. The signal to noise ratio 10 dB is in the bandwidth.

The figure above shows the accuracy as a function of signal to noise ratio. The elevation and the orthogonal angles are 0° (at vertical).

HiPAP® 101 system	S/N [dB rel. 1µPa]
	20
Angular Accuracy, 1σ [°] (At 0° elevation)	0.14
Range Accuracy, 1 σ [m]	0.2
Cymbal, Range Accuracy, 1σ [m]	0.02
Receiver beam [°]	15
Coverage [°]	+/-60

HiPAP® 101

11.2 LBL accuracy

The position accuracy for LBL operation depends on the transponder array geometry, sound velocity errors and signal to noise ratio. Range accuracy's down to a few centimetres can be obtained, while ROV and vessel positions can be calculated to within a few decimetres.

Table 1 and Figure 8 show acoustic parameters and position accuracies that are achieved in deep waters when using an array with four transponders at water depth 3000m.

Source of random error	1-sigma CW	1-sigma Cymbal	
Range reception with 20 dB S/N	0.15 m 0.02 m		
Range reception in the transponder	0.15 m 0.02 m		
Range error due to transponder movements	0.01 m		
Range error due to rig movements	0.05 m		
HiPAP® Angle accuracy	0.15°		

The blue lines in Figure 8 show the random error in the horizontal position when the rig moves within a transponder array with 4 transponders placed on a circle with 500 m radius at water depth 3000 m. The lower line shows the expected error when the Cymbal acoustics is used and the upper line when the CW acoustics is used.

The black line shows the systematic error when the sound velocity is set 1 m/s wrongly in APOS. This error is zero in the centre of the array due to the symmetry. The LBL run time calibration should be done when the rig is in the centre of the array. Then the effect of a wrong sound velocity setting in APOS is strongly reduced, as shown with the dotted black line.

11.3 Range capabilities

The range capabilities of an acoustic system are dependent of the vessels noise level and attenuation of the transponder signal level due to ray bending. The transponder source level and the signal to noise ratio are crucial factors for calculating maximum range capability. The below figures are recommended guideline for maximum operating range.

Please also be aware of:

- The figures are valid for HiPAP® 501/351/451
- Figures for cNODE[®] are when used in Cymbal mode (Wideband)
- The HiPAP® system will in many cases have longer range capabilities that specified below due to its narrow receiving beam.
- The figures are approximate values for guidance.
- Ray bending can limit the maximum range
- Ray bending normally not a problem for vertical positioning operation

Transponder	Transponder source level	Max Range
	(dB rel.1µPa ref. 1 m)	(Typical, m)
cNODE [®] 180°transducer	190	2000
cNODE [®] , 40° transducer	203	3000
cNODE [®] , 30° transducer	206	4000
MPT/SPT 319	188	1500
MPT/SPT 324	195	2000
MPT/SPT 331	206	3000

The specification is based on:

- Free line of sight from transducer to transponder
- No influence from ray bending
- Signal to Noise ratio ≥ 12 dB. rel. 1µPa

HiPAP units/transducer cables

Hull unit	Part no.	Transceiver cable / Transceiver unit	Part no.	Transducer	Part no.	Service dock	Part no.
HL 2180							
Hull Unit HI		Patch cable HL 2180 HiPAP® 500/450 For x81 TU	306068	HiPAP® 500	100-103315	Service dock 500	499-089777
2180 (TD cable is	306080	Patch cable HL 2180 HiPAP® 350/100 for Model			100 102217	Service dock 500	499-089777
included part		x81 TU	306071		100-103317	Service dock 350	499-210007
				HiPAP® 100	100-103318	Service dock 500	499-089777
		Patch cable HL 2180		HiPAP® 350	100-103317	Service dock 500	499-089777
Drawing:		HiPAP® 350/100 for x21 TU	306076			Service dock 350	499-210007
316242				HiPAP® 100	100-103318	Service dock 500	499-089777
			HL 3	770			
		Patch cable HL 3770 HiPAP® 500/450 For x81 TU	304106	HiPAP® 500	100-103315	Service dock 500	499-089777
Hull Unit HL						Service dock 500	499-089777
is included part	305427	Patch cable HL 3770 HiPAP® 350/100 for x81 TU	306072	HiPAP® 350	100-103317	Service dock 350	499-210007
no. 304105)				HiPAP® 100	100-103318	Service dock 500	499-089777
		Patch Cable HL 3770 HiPAP® 350/100 for x21 TU 30			100-103317	Service dock 500	499-089777
Drawing:	awing:		306077	HIPAP® 350		Service dock 350	499-210007
316243				HiPAP® 100	100-103318	Service dock 500	499-089777
			HL 4	570			
		Patch cable HL 4570 HiPAP® 500/450 For x81 TU	306069	HiPAP® 500	100-103315	Service dock 500	499-089777
Hull Unit HL 4570 (TD cable					100-103317	Service dock 500	499-089777
is included part		Patch cable HL 4570	306073		100-105517	Service dock 350	499-210007
10.00000)	306081		300073	HiPAP® 100	100-103318	Service dock 500	499-089777
				HiPAP® 350	100-103317	Service dock 500	499-089777
Drawing:		Patch Cable HL 4570 HiPAP® 350/100 for x21 TU	306078			Service dock 350	499-210007
316244				HiPAP® 100	100-103318	Service dock 500	499-089777
			HL 6	180			
		Patch cable HL 6180 HiPAP® 500/450 For x81 TU	306070	HiPAP® 500	100-103315	Service dock 500	499-089777
Hull Unit HL 6180 (TD cable		Patch cable HI 6120			100 102217	Service dock 500	499-089777
is included part		HiPAP® 350/100 for x81 TU	306075	HIPAP® 300	100-103317	Service dock 350	499-210007
10. 300039)	306082			HiPAP® 100	100-103318	Service dock 500	499-089777
		Patch Cable HL 6120		HiPAP® 350	100-103317	Service dock 500	499-089777
Drawing:		HiPAP® 350/100 for x21 TU	306079	1 IIF AF & 300	100-103317	Service dock 350	499-210007
316245				HiPAP® 100	100-103318	Service dock 500	499-089777

Note:

Patch cable = Transducer cable Y^2

TD = Transducer TU = Transceiver Unit

Service dock 500 requires 500 mounting flange w/DN 500 Gate valve Service dock 350 requires 350 mounting flange w/DN 350 Gate valve

11.4 Computer

Degree of protection:	IP 22
Weight:	approximately 17 kg

→ Outline dimensions - see drawing in the Drawing file chapter from page 65.

Power

Voltage:	115 / 230 Vac
- Selector-switch beside power connector.	
 The power supply must be kept within ± 10 nominal voltage (90-132 VAC / 180-264 V 	% of the unit's AC).
 The maximum transient voltage variations on the main switchboard's bus-bars which could occur (except under fault conditions), are not to exceed -15% to +20% of the nominal voltage. 	
Frequency:	50-60 Hz
Maximum current drawn:	5 A
Normal current drawn:	0.5 A
Nominal:	80 W

Environment

0 to 55° C
-40 to +70° C
95% / 85% relative

Vibration

Range:	5-100 Hz
Excitation level:	5-13.2 Hz ±1.5 mm, 13.2-100 Hz 1 g

11.5 Keyboard

Degree of protection:	IP 64
Weight:	0.5 kg
Cable length:	1.5 m

→ Outline dimensions - see drawing in the Drawing file chapter from page 65.

11.6 Trackball

A standard off the shelf unit is used.

11.7 Display

- → Outline dimensions see drawing in the Drawing file chapter from page 65.
- \rightarrow For more information, refer to separate manual supplied with the display.

11.8 Responder Driver Unit (option)

Degree of protection:	IP 44
Weight:	2.8 kg
Dimensions:	LxWxH (280x 200x 73) mm,
	without connectors
Power:	230 VAC, 150 mA

Environment

Operation temperature:	0 to 55 °C
Storage temperature:	-40 to 75 °C
Humidity:	15% - 95% (non condensing)

Responder Driver Unit kit

Pa	rt no.:	317925
In	cludes:	
-	Responder Driver Unit	
-	Power cable	
-	Ethernet cable	
-	D-sub connectors	
-	Mounting screws w/nuts (4)	

11.9 Fibre Splice Box

Eight (8) ports MX-WFR-00024-02.

11.10 Transceiver units

Common data

This data is the same for both transceiver units.

Degree of p	protection:
-------------	-------------

IP 44

Power

Voltage:	230 Vac
 The power supply to a HiPAP® transceiver unit kept within <u>+</u>10% of the unit's nominal voltage (180-264 VAC). 	must be
 The maximum transient voltage variations on the switch- board's bus-bars which could occur (exc fault conditions), are not to exceed -15% to +20% nominal voltage. 	e main ept under 6 of the
 110 VAC to 230 VAC transformer (option) For installations where only 110 VAC is available external transformer from 110 VAC to 220 VAC installed on the main power line to the transduce 	le, an 2 must be r unit.
Inrush max:	35 A Ac
Nominal:	2.1 A Ac
Frequency:	50 - 60 Hz

Environment

Operating temperature:	0 to +55 °C
Storage temperature:	-20 to +65 °C
Humidity:	15% - 95% (non condensing)

Heading reference

- Serial RS-422 SKR format
- Serial RS-422 STL format
- Serial RS-422 NMEA format
- Serial RS-422 Seatex MRU or Seapath
- Serial RS-422 DGR format (Tokimec DGR 11)
- Serial RS-422 NMEA HDT, VHW
- Serial RS-422 SKR format
- Roll and pitch reference (both models): Serial RS-422 Seatex MRU or Seapath

Model x81

Weight:	approximately 80 kg
	(depending on number of PCBs fitted)

→ Outline dimensions - see drawing in the Drawing file chapter from page 65.

Main power supply

Input:	230 VAC
Output:	24 VDC, 12 VDC, 6 VDC, 5
-	VDC, 3.2 VDC
Input:	230 VAC
Output:	48 VDC

Model x21

Weight:	approximately 35 kg
	(depending on number of PCBs fitted)

→ Outline dimensions - see drawing in the Drawing file chapter from page 65.

Main power supply

Input:	90 VAC - 264 VAC
Output:	48 VDC, 24 VDC, 12 VDC, 5.4
-	VDC

11.11 HiPAP® hull units

- \rightarrow HiPAP® HL 2180 dimensions on page 76
- \rightarrow HiPAP® HL 3770 dimensions on page 77
- \rightarrow HiPAP® HL 4570 dimensions on page 78
- \rightarrow HiPAP® HL 6120 dimensions on page 79

The following specifications are common for all HiPAP® hull units.

Degree of protection:

IP 54

Environment

Storage:

-20° C to +60 °C

Operating:	0° C to +55 °C
Storage / operating humidity:	90% / 80% relative

Power supply

Voltage:	230/440 VAC 3-phase
Frequency:	50-60 Hz
Consumption max:	1100 W

11.12 Mounting flange

Certificates - Lloyd's and DNV certifications are standard, others on request.

Specifications	DN 500 mm mounting flange	DN 350 mm mounting flange
Туре:	DN 500	DN 350
Standard height:	600 mm	200 mm
Optional height:	Specified by customer	Specified by customer
Diameter Internal / Flange:	506 mm / 670 mm	350 mm / 505 mm
Wall thickness:	20 mm	20 mm
Weight (standard):	Approx. 90 Kg	Approx. 70 Kg
Securing bolt holes:	Quantity: 20 Diameter: 26 mm	Quantity: 16 Diameter: 22 mm
See also drawing:	on page 72	on page 73

11.13 Gate valve

Certificates - Lloyd's and DNV certifications are standard, others on request.

Specifications	DN 500 gate valve	DN 350 gate valve
Туре:	DN 500	DN 350
Height:	350 mm	290 mm
Weight:	500 kg	225 kg
Material case:	670 mm Nodular cast iron	670 mm Nodular cast iron
Material gate:	Bronze	Bronze
Length (from centre):	1335 mm	940 mm

Specifications	DN 500 gate valve	DN 350 gate valve
Diameter Internal / Flange:	500 mm / 670 mm	350 mm / 505 mm
Securing bolt holes:	Quantity: 20	Quantity: 16
	Diameter: 26 mm	Diameter: 22 mm
See also drawing:	on page 72	on page 73

11.14 Raise and lower motor

Motor type:	SEW EURODRIVE	S62 DT80N4BM/HF
Degree of protection	:	IP 54
Input voltage:		230/440 VAC
Phase:		3 Phase
Rated power:		750 W
Speed:		1500 RPM
Timken OK Load, A	STM D2509	Lb 40

11.15 Hoist Control Unit

Degree of protection:	IP 54
-----------------------	-------

Dimensions

→ Outline dimensions - see drawing in the Drawing file chapter from page 65.

Power

Voltage:	230 VAC / 440 VAC, 3 phase
Frequency:	50 – 60 Hz
Power consumption:	750 – 1100 W depending o application

Environment

Storage temperature:	-20 to +65 °C
Operational temperature:	-0 to +55 °C
Storage / operating humidity:	90% / 80% relative

11.16 Remote Control Unit

Degree of protection:	IP 54
-----------------------	-------

Dimensions

 \rightarrow Outline dimensions - see drawing in the Drawing file chapter from page 65.

Power

Voltage:	24 VDC (from HCU)
Power consumption:	6 W

Environment

Storage temperature:	-20 to +65 °C
Operational temperature:	-0 to +55 °C
Storage / operating humidity:	90% / 80% relative

11.17 Transducer units

 \rightarrow Weight - see drawing in the Drawing file chapter from page 74.

Model:	HiPAP® 500 transducer	HiPAP® 350 transducer	HiPAP® 100 transducer
Diameter:	392 mm	320 mm	452 mm
Shape:	Spherical	Spherical w/cylindrical body	Cylindrical body
12 DRAWING FILE

12.1 Outline dimensions

The outline dimensions shown in this section are for information only and must not be used for installation or manufactory purposes.

Part No.	Rev.	Description	Ref.
Outline dimensions			
365290	В	Computer	on page 66
N/A	N/A	Keyboard	on page 67
N/A	N/A	Display	on page 68
316067	А	Responder Driver Unit (option)	on page 69
308630	В	Transceiver Unit Model x81	on page 70
304659	С	Transceiver Unit Model x21	on page 71
830-083045	Н	DN 500 mounting flange w/gate valve	on page 72
830-214043	Е	DN 350 mounting flange w/gate valve	on page 73
830-102887	D	Hoist Control Unit	on page 74
830-103012	В	Remote Control Unit	on page 75
316242	А	HiPAP® HL 2180	on page 76
316243	А	HiPAP® HL 3770	on page 77
316244	A	HiPAP® HL 4570	on page 78
316245	A	HiPAP® HL 6120	on page 79

Computer –desktop mounting and outline dimensions

Keyboard

19" Display

Responder Driver Unit (option)

Transceiver Unit Model x81

Transceiver Unit Model x21

DN 500 mounting flange w/gate valve

Hoist Control Unit

Remote Control Unit

HiPAP® HL 2180

Transceiver x81 (304401) Outline Dim. 308630 Transceiver × (302506) Outline Dim. 30 5845 . 304659 ×21 5175 iner smi Deve alea 4425 Alternative Transceiver for HiPAP 100 and 350 Transducer <u>Shaft sleeve support</u> Min. one transverse and one longitudinal detachable beam (app. L160x80x10) <u>A – A</u> <u>1:10</u> 3675 4 Weight: Approx 1350kg (750) 2925 2175 ø18 € Ð 1280 200 2250 8 850 02 Service Dock 500 Service Dock Alternative HiPAP 350 Transducer 45. 190 <u>B - B</u> 1:10 Gate <u>Gallow support</u> (2 pairs min.) Detachable beam (app. L100x10) 350 Valve 0 290 350 *Optional heights on request. Gate •000 Valve 2558 2589 HiPAP 100 (100–103318) Weight: Approx HiPAP 350 (100–103317) Weight: Approx HiPAP 500 (100-103315) Weight: Approx 60kg Opening through deck required for installation or removal of Hull Unit. × 30kg 58kg Note: $\frac{g}{p} \stackrel{\text{if}}{\to} \frac{g}{p}$ All measurements are in mm. The drawing is not in scale. CD31141 Page 1 of 1 316243 Rev.A

HiPAP® HL 3770

HiPAP® HL 4570

HiPAP® HL 6120