

HPR 400 Binary Communication Protocol

This document describes the binary telegrams transmitted from the Operator Station in the HiPAP / HPR 400 systems. It also describes some of the ASCII sentences transmitted from and received by the Operator Station.

The ASCII sentences complying with the NMEA 0183 rules are described in the APOS on-line help

Document revisions

	Docume Depar		Hardware/Software design		are Project/Product Management	
Rev	Date	Sign	Date	Sign	Date	Sign
A	10.03.98	GM	24.07.98	HJP	03.08.98	JEF
В	15.05.03	GM	15.05.03	THG	15.05.03	JEF
С	03.05.04	GM	06.05.04	THG	06.05.04	JEF
D		•		_		

(The original signatures are recorded in the company's logistic database.)

Contents

1	INTRODUCTION	5
1.1	Definitions	5
2	GENERAL TELEGRAM FORMAT	7
2.1	Time of telegram transmission	8
2.2	Floating point data format	
2.3	Serial line format	9
2.4	Ethernet format	9
2.5	ADP Ethernet header	9
3	TELEGRAMS SENT FROM THE OPERATOR STATION	10
3.1	Message 1, Transponder position data	10
	Example	14
3.2	Message 2, LBL position	15
	Time Header	
	Example	18
3.3	Message 4, LBL Ranges	19

Document history

(The information on this page is for internal use)

- Rev. A Original issue.
 - Earlier, the HPR 400 binary protocol document was distributed as an unofficial document, not included in the manuals. The last unofficial document was "Communication Protocol V2.1" file name SWTS013.H / 94.11.17.
- **Rev. B** Updated the Message 2, LBL position Pos_north. Removed sections 3.4 / 3.5 / 3.6 and chapter 4.
- **Rev.** C Updated layout. Miner corrections in the text.

1 INTRODUCTION

This note is a technical documentation that may be changed. Please contact Kongsberg Maritime before implementing the reception of telegrams to assure that the note matches the SW version in the actual HiPAP/HPR system to be interfaced.

1.1 Definitions

The following abbreviations are used in this document:

APOS Acoustic Positioning Operator Station, the "new" Operator Station.

BYTE 8 bit data

HiPAP High Precision Acoustic Positioning

HPR Hydroacoustic Positioning Reference system

HSC 400 HPR 400 System Controller, the "old" Operator Station.

LBL Long Base Line

ms Milliseconds

REAL 32 bit floating point data REAL_64 64 bit floating point data

ROV Remotely Operated Vehicle

SSBL Super Short Base Line

TD Transducer
TP TransPonder
WORD_16 16 bit data

APOS is the Acoustic Positioning Operator Station with Windows. All telegrams are implemented in the APOS.

HPR 400 and HiPAP are two different types of transceivers. They may both be connected to an APOS Operator Station. The telegrams are delivered by the Operator Station, and the format is independent of the physical units involved.

Later in the note, the term **The system** means the HiPAP / HPR 400 system. The term **The Operator Station** is used for APOS.

The binary telegrams and the ASCII sentences are the transmitted to the Com ports and to the Ethernet as specified in the configuration menus in the Operator Station. The same telegram may be configured to be sent to many, to one or to none destinations.

The following "terms" are used:

X - POSITION Athwart ship distance to transponder, positive

direction towards starboard.

Y - POSITION Fore and Aft ship distance to transponder,

positive direction forward.

Z - POSITION The transponder depth, positive direction

downwards.

SLANT RANGE The distance to the transponder.

COURSE Vessels heading, 0 - 360 degrees, positive

direction turning clockwise.

ROLL Vessels roll, -180 -, 0, - 180 degrees, positive

direction is vessels port side up.

PITCH Vessels pitch, -180 -, 0, - 180 degrees, positive

direction is bow up.

Positive vessel y-axis is forward, positive vessel x axis is towards starboard and positive vessel z-axis is downwards. This is a left-hand coordinate system.

2 GENERAL TELEGRAM FORMAT

The binary telegrams transmitted on asynchronous serial lines follow the same general format with telegram heading and telegram tail. The content of the data block depends on the message type, as described for each message.

The telegrams transmitted on Ethernet have another heading, as described in 2.4 and 2.5.

Index	Content	Size
000	Start character	ВҮТЕ
001	Block length N	WORD_16
003	Message type	ВҮТЕ
004	Destination	ВҮТЕ
005	Data Block with N bytes	
N+5	Sumcheck	WORD_16
N+7	Stop character	BYTE

Start character The start character is 55 hex.

Block length The block length defines the length of the data block.

Message type The message type defines the message transmitted. It is a number between 1 and 255.

Destination The destination defines the device to which this telegram is transferred. It is not in use, and it is always set to 0.

Data block The data block contains the message itself.

The length **N** depends on the Message type. The data block for the different message types are explained in the next chapters.

Sumcheck The sumcheck is the 16 bit sum of all bytes in the telegram, except the sumcheck itself and the stop character. The sum is calculated by byte+byte addition.

Stop character The stop character is equal to 0AAH.

Note! The start character and the stop character are not unique. They may also occur as data within the telegram.

2.1 Time of telegram transmission

The time delay between the end of one telegram and the start of the next one is at least 30 ms. It separates the telegrams.

2.2 Floating point data format

Both 32 bits and 64 bits floating formats are used in the telegrams. They are coded according to the IEEE standard 754. 32 bits floating numbers use the single precision data format. They are named REAL throughout the note. 64 bits floating numbers use the double precision data format. They are named REAL_64 throughout the note.

The REAL format occupies 4 contiguous bytes of memory, (32 bits).

SIGN	EXI	PONENT	SIGNIFICANT		
31	30	23	22		0

Sign Sign = 0 if value is positive or zero Sign = 1 if value is negative.

Exponent The exponent field contains a value offset by 127. The actual exponent can be obtained from the exponent field by subtracting 127. The field is zero if the REAL value is zero.

Significant The byte with the lowest address contains the least significant 8 bits of the significant, and the byte in the highest address contains the sign and the 7 most significant bits of the exponent.

> The REAL_64 format occupies 8 contiguous bytes of memory as shown below. The explanation of the fields is similar to the explanation for REAL, except that the exponent is biased with 1023 instead of 127.

SIGN	EXPONENT			SIGNIFICANT	
63	62	52	51		0

2.3 Serial line format

The serial line format is:

Baud rate: Selectable between 300 and 38400 baud.

The default value is 9600 baud.

Parity: none
Data bits: 8
Stop bits: 1

The least significant byte (bit 0-7) is transmitted first in both WORD_16s, REALs and REAL_64s, followed by the more significant bytes.

2.4 Ethernet format

When the telegrams are sent to external units via Ethernet, they are sent as an UDP message. They can be sent as individual messages or as broadcast messages.

The telegram contains the "Message type" and the "Data Block" in addition to the UDP blocks.

Index	Content	Size
0	Message type	ВҮТЕ
1	Data block with N bytes	

The meaning of the "Message Type" and the "Data Block" is as described in the start of the chapter for the serial lines.

2.5 ADP Ethernet header

The Kongsberg Maritime ADP header consists of 16 bytes. They replace the message type in the normal header explained above. The Kongsberg Maritime ADP header is only used when explicitly requested in the Operator Station menus.

3 TELEGRAMS SENT FROM THE OPERATOR STATION

3.1 Message 1, Transponder position data

The position message telegram contains SSBL transponder position data and sensor data related to the position measurement. It is transmitted each time a new position is calculated.

Block content	Size
Tp_index	WORD 16
Operation_mode	BYTE
Sync_mode	BYTE
Tp_type	BYTE
Tp_operation	BYTE
Pos_data_form	BYTE
Reply_status	BYTE
Filt_X_pos	REAL
Filt_Y_pos	REAL
Filt_Z_pos	REAL
X_pos	REAL
Y_pos	REAL
Z_pos	REAL
Slant_range	REAL
P_course	REAL
P_roll	REAL
P_pitch	REAL
Td_beam	BYTE
Td_type	BYTE
Td_num	WORD_16
Diagnostic	WORD_16
Stand_dev	REAL
Instr_data (*)	REAL

Tp_index defines the Tp for which the position is valid.

It is a number from 1 to 298. The indexes below 100 are for the low frequency Tps (The Axx Tps), the indexes between 100 and 200 are for the medium frequency Tps (The Bxx Tps), and the indexes between 200 and 298 are for the high frequency Tps (The Cxx Tps).

Examples: A02 is coded with Tp_index 2.

B01 --"-- 101.

B56 --"-- 156.

Operation_mode Contains the Operation mode of the transceiver.

00 equals standard navigation mode.

01 " simulated position test mode. (Training)

Sync_mode Contains the synchronization mode of the transceiver.

0 equals No synchronization.

1 " Sequence sync.

2 " Interrogation sync.

Tp_type Defines the transponder type:

000 equals transponder

001 " depth transponder

002 " inclinometer transponder

003 " diff. incl. transponder

004 " compass transponder

005 " acoustic control transponder

006 " beacon

007 " depth beacon

010 " responder drive 1

011 " responder drive 2

012 " responder drive 3

013 " responder drive 4

Tp_operation Defines the operation mode of the transponder:

000 equals fixed standard transponder mobile -----

Pos_data_form Defines the position coordinate format:

Bit 0 = 0 vessel oriented, cartesian.

Bit 0 = 1 north oriented, cartesian.

Bit 3 = 1 Ping count data valid

The coordinates are normally vessel oriented, that is bit 0 is 0.

Reply_status Defines the transponder reply status. When the whole byte is zero, the reply is ok.

Bit 0 and 1 contains information about timeouts.

Value 1 means timeout on the first pulse, value 2 means timeout on the second pulse and value 3 means timeout on the third pulse.

Bit 2 set Ambiguity error X angle.

Bit 3 set Ambiguity error Y angle.

Bit 4 set Reply rejected by the software filter.

Bit 5 set VRU or gyro error. The position is calculated with zero course and/or zero roll and pitch. The VRU and/or gyro error is reported in the DIAGNOSTIC parameter.

- **Filt_X_pos** The filtered x position coordinates of the transponder. Transponders horizontal athwart ship distance from reference point. A meter value in REAL format.
- **Filt_Y_pos** The filtered y position coordinates of the transponder. Transponders horizontal fore and aft ship distance from reference point. A meter value in REAL format.
- **Filt_Z_pos: (Depth)** The filtered z position coordinates of the transponder. Transponders vertical distance from reference point. A meter value in REAL format.
 - **X_pos** The raw x position coordinates of the transponder. Transponders horizontal athwart ship distance from reference point. A meter value in REAL format.
 - **Y_pos** The raw y position coordinates of the transponder. Transponders horizontal fore and aft ship distance from reference point. A meter value in REAL format.
 - **Z_pos:** (**Depth**) The raw z position coordinates of the transponder. Transponders vertical distance from reference point. A meter value in REAL format.
 - **Slant_range** The direct raw slant range from the vessel's transducer to the transponder. A meter value in REAL format.
 - **P_course** The vessels course at the time of transponder position measurement. A value in REAL format, 0 to 360 degrees.
 - **P_roll** The vessels roll at the time of transponder position measurement. A value in REAL format, +/-180 degrees.
 - **P_pitch** The vessels pitch at the time of transponder position measurement. A value in REAL format, +/-180 degrees.
 - **Td beam** Defines the transducer beam, 0=wide, 1=narrow.

Td_type defines the transducer type.

```
equals
             30 kHz
                      wide beam only
1
             30 kHz
                      wide/medium beam
2
             30 kHz
                      wide/narrow beam
3
             30 kHz
                      PMT-300, wide/wide extended
             baseline.
4
             15 kHz
                      wide/medium
5
             30 kHz
                      LBL
6
             15 kHz
                      LBL
7
             30 kHz
                      SSBL NMT-301
8
             30 kHz
                      SSBL tracking td-er
9
             30 kHz
                      HiPAP
```

Td num defines the transducer number 1 to 4 used in the positioning.

Diagnostic Defines the transceiver hardware status.

	Error information	Error index	
15	8	7	0

The least significant byte of this WORD_16 parameter contains an index, defining one error. If there is more than one error, the index will alter between the error indexes. The most significant byte of the parameter contains additional information for the error reported by the index.

The error indexes are reserved according to the following plan:

1 to 31	General errors
32 to 63	Application specific errors
64 to 255	Debug diagnostics.

The General errors are:

- 1 HW reset
- 2 Fatal transceiver error
- 3 VRU error
- 4 Gyro error
- 5 External serial line error
- 6 Transmitter error
- 7 DSP error
- 8 Tracking td error

When the Operator unit receives an error index, it is displayed together with the additional information. The additional information is displayed as a hex number. The meaning of the numbers is explained in the Operator's manual.

Stand_dev The expected accuracy of the position. It is based on the covariance data calculated for the SSBL position. It is equal to the statistical sum of the major and minor semi axes of the error ellipse displayed around the position.

Instr data (*) This is only used if any of the below cases are true:

If the message contains data from a Inclinometer transponder, ($Tp_type = 2$ or 3), the first two reals contain the Inclination of the transponder. The first contains X inclination and the second contains the Y inclination.

If the message contains data from a compass transponder, ($Tp_type = 4$), the first real in Instr_data contains the heading of the compass transponder.

If the message contains data from a depth transponder, (Tp_type = 1), the first real in Instr_data contains the depth measured by the transponder.

If bit 3 in Pos_data_form is set, the first real in Instr_data contains the ping count from the transponder with resolution million ping.

If Td_type is tracking td, the last real value contains the tracking td angle.

Example

Telegram:

The data block of the telegram decoded:

TpOmSmTtToPfSt X Y Z 148 1 0 0 0 0 0 100.95 -59.57 4.03 100.96 -59.63 4.40

Rang Crs Roll Pitc TbTtT#Diag Std 116 0.0 0.00 0.00 1 1 2 0 2.01

3.2 Message 2, LBL position

The LBL position telegram contains a position relative to the origin of the Tp array. The position is of the vessel or of another object. The telegram is transmitted each time a new position is calculated. If the Transponder array is north oriented, the coordinates are relative to true North, else they are relative to local north.

Block content	Size
Sequence_number	WORD_16
Time_header (7)	BYTE
Interrogation_age	WORD_16
Tp_array	BYTE
Td_num	BYTE
Pos_east	REAL_64
Pos_north	REAL_64
Depth	REAL
Hor_err_ellipse_direction	REAL
Hor_err_ellipse_major	REAL
Hor_err_ellipse_minor	REAL
Z_standard_deviation	REAL
Pos_type	BYTE
Pos_status	BYTE
P_course	REAL
P_roll	REAL
P_pitch	REAL
Diagnostic	WORD_16

Sequence_number The sequence number is incremented for each LBL interrogation. It is reset each time LBL positioning is started. Range 0 - 65535.

Time header See subchapter below.

Interrogation_age Time since interrogation of transponder array. The resolution is 1ms.

Tp_array When the LBL position is calculated in Navigation mode, it contains the Tp array number in use (1 and upwards).

When the position is calculated in Training mode, it contains 255.

Td num Defines the transducer number in use.

1 to 4	means td 1 to 4 on transceiver	1
5 to 8	"	2
9 to 12	"	3
13 to 16	"	4

0 has a special meaning. Then the position is calculated based on measurements on more than one transducer.

Pos_east The East and North coordinate of the position in meters. Positive East **Pos** north value is towards east, and positive North value is towards north.

The coordinates are local coordinates.

The HSC 400 also includes global UTM coordinates.

Depth The depth coordinate in meters. Positive value is downwards. It is the vertical distance from the sea level to the reference point of the object being positioning.

Hor_err_ellipse_ Each LBL position has an one sigma error ellipse associated with it. direction The direction is the angle in degrees between the north axis and the major axis of the ellipse.

Hor err ellipse The major semi axis of the error ellipse. major

Hor_err_ellipse_ The minor semi axis of the error ellipse. minor

Z standard The standard deviation of the depth. deviation

Position of the vessel Pos_type 0

Position of ROV1

Position of ROV16

17 Position of TP range Position no 1

20 Position of TP range Position no 4

Bit 7 is 0 if the coordinates are local. It is set if the they are UTM coordinates.

Pos_status This variable tells the status of the position calculation. The statuses with an asterisk in the table below are so serious that no position is contained in the telegram.

- 0 Ok position.
- 1 The measured ranges match badly the calculated position. The range residuals are big.
- The position calculation did converge in the horizontal plane, but not vertically.
- The calculation of the interrogation time in MuLBL mode did not converge.
- 16* Too few ranges are measured.
- 17* The position calculation does not converge.
- 18* Internal HPR computation error.
- 19* No initial position is calculated.

P course An average of course read at the time of pulse arrival.

P_roll An average of roll read at the time of pulse arrival.

P_pitch An average of pitch read at the time of pulse arrival.

Diagnostic See Message 1, Transponder position data.

Time Header

The format of the Time_header is:

Block content	Size	Index	Resolution	Range
Day	BYTE	0	1 Day	1-31
Month	BYTE	1	1 Month	1-12
Year	BYTE	2	1 Year	0-99
Hours	BYTE	3	1 Hour	0-23
Minutes	BYTE	4	1 Minute	0-59
Seconds	BYTE	5	1 Second	0-59
1/100th	BYTE	6	1/100 second	0-100
seconds				

It defines the clock when the position is valid.

Example

Telegram:

```
55 41 00 02 00 08
                   00
                      18
                         07 62
                                0d 2b
                                      23
f8 0a ff
         02
            7a a5
                   cf
                      f8
                         d3
                             fc
                                68 40
                                       3d e2
                                      a8 41
a3 fb 5d
         14 59
                                ef b3
                c0
                   70
                      01
                         9c
                             c0
ff 3a 07
         3e da a1
                   fc
                      3d
                         ca
                            39
                                18
                                   3e
                                      00 00
00 00 00 00 00 00 00
                         00
                            00
                                00 00
                                      00 00
50 17 aa
```

The data block of the telegram decoded:

```
Seqno ddmmyyhhmmss.hh
                           Age Ar Td
                                             East
    8 240798134335,74 2808 ff
                                          199.90
North Depth
               Dir
                    Major
                            Minor
                                   Dsigm
                                           Pt Ps
                            0.12
                                   0.15
                                           0 0
-100.32 -4.88
               21
                    0.13
     Roll Pitch Diag
Crs
0.0
     0.00 0.00 0
```

3.3 Message 4, LBL Ranges

The LBL_ranges message contains raw measured ranges to the transponders, and VRU and compass data. This Message is transmitted just after the Message 2 (LBL position). The two messages have the same sequence number.

Block content	Size
Sequence_number	WORD_16
Range_age (8)	WORD_16
Tp_array	BYTE
Td_num	BYTE
Operation_mode	BYTE
Sync_mode	BYTE
Pos_type	BYTE
Reply_status (8)	BYTE
Range (8)	REAL
P_course	REAL
P_roll	REAL
P_pitch	REAL
Diagnostic	WORD_16

Range age, reply status and range consist of a list with 8 entries, one for each transponder.

Sequence_number The sequence number is incremented for each LBL interrogation. It is reset each time LBL positioning is turned ON. Range 0 - 65535.

Range age Time since reception of the range. Resolution 1ms.

Tp_array When the LBL position is calculated in Navigation mode, it contains the Tp array number in use (1 and upwards). When the position is calculated in Training mode, it contains 255.

Td num Defines the transducer number in use.

1 to 4	means td 1 to 4 on transceiver	1
5 to 8	"	2
9 to 12	"	3
13 to 16	"	4

Operation mode See Message 1, Transponder position data.

Sync_mode contains the synchronization mode of the transceiver.

0 equals No synchronization. 1 Sequence sync. 2 Interrogation sync.

Pos_type 0 - Position of the vessel

Position of ROV1

16 - Position of ROV16

17 - Position of TP range Position no 1

20 - Position of TP range Position no 4

Reply_status_n Defines the reply status. When bit 0 to 5 are zero, the measurement is OK.

Bit 0 and 1 contains information about timeouts.

Value 1 means timeout on the first pulse, value 2 means timeout on the second pulse and value 3 means timeout on the third pulse.

Bit 2 set Ambiguity error or angle rejected X angle.

Bit 3 set Ambiguity error or angle rejected Y angle.

Bit 4 set Range rejected by the software filter.

Bit 5 set Vru or gyro error. The position is calculated with zero course and/or zero roll and pitch. The VRU and/or gyro error is reported in the DIAGNOSTIC parameter.

Bit 6 and 7 contain information about what is measured. The contents of the two bits are either 00 (no measurement), 80H (only the range is measured) or C0H (both the range and the directions are measured).

Bit 7 set The range is measured OK.

Bit 6 set The SSBL directions are measured OK.

Range n The measured range to the transponders.

P_course An average of course read at the time of pulse arrival.

P roll An average of roll read at the time of pulse arrival.

P pitch An average of pitch read at the time of pulse arrival.

Diagnostic See Message 1, Transponder position data.