
kongsberg.com

FEATURES

• SpiderFusion is a modular
SW toolset

• Created for easy and
efficient implementation
of end-user software
solutions

• Support for processing
information in multi-
threaded environments

• Functionality for extending
the Qt SW toolset

• Management and control of
Application Objects (AO)

• Complex data structures
connected to the geo-
graphical space, includ-
ing related computation
functions

• Interaction between soft-
ware and its platform,
i.e. hardware, programming
language and operating
system

S
p
i
d
e
r
F
u
s
i
o
n

SpiderFusion

SpiderFusion is a software development toolset providing easy and
efficient implementation of end-user software solutions. Using this type
of toolset is a common software development approach, and hence, there
are numerous toolset products on the market for solving different type of
problems.

During the last 15-20 years, more and more emphasis has been put
on basing toolset implementation on the principles, structures and
prescriptions defined by modern international standards. This approach
will guarantee that the toolset solves their tasks according to widely
recognized principles. This will also simplify toolset replacement.

2019/08 KONGSBERG - All rights reserved

2 KONGSBERG – SpiderFusion

An alternative approach is to skip the toolset level, and instead, implement the entire software directly from the
prescriptions defined by the standard. This approach will certainly become more expensive, but could also lead to
exotic solutions and reduced quality. Standardized toolsets will also provide more smoothly interactions within
and between software components.

The structure of SpiderFusion is modular. It basically consists of 5 modules. Furthermore, each module is divided
into a varying number of components of different size.

Note in particular that the 4 uppermost modules do not depend on each other. This means that SpiderFusion

could be installed in various configu-
rations being combination of one or
more modules. For instance, many
projects will only use the SpiderSpatial
module. Furthermore, we see that all
4 modules depend on the SpiderGear
module. This means that all installa-
tion of SpiderFusion must include the
SpiderGear module. SpiderGear could
also be used stand-alone.
The component level does not allow
individual components to be installed,
even if this would have been technically
feasible.

Below are descriptions of the main focus for each of the SpiderFusion modules. Furthermore, it describes each
individual component on an overall level of detail. SpiderFusion User Guide documentation has more detailed
technical information on the concepts and functionality of individual components. Detailed technical informa-
tion is available as Reference Guide information meant for software developers.
information is available as Reference Guide information meant for software developers.

SpiderCore
SpiderCore offers software development support for information to be processed in a multi-threaded runtime
environment. This means that separate parts of the program (“threads”) could be executed in parallel and where
the threads are given the possibility to share memory.

During the last couple of decades, modern processor technology has been given the ability to support processing
of an increasing number of threads in parallel. This possibility has been heavily used by modern software develop-
ment, even if it increases software complexity and leads to higher risks for separate threads interfering negatively
with each other.

SpiderCore provides tools and software patterns for simplifying this problem, and hence minimizing the level of
potential conflicts. This approach makes the final program more robust, and also often more efficient.

SpiderCore SpiderGUI SpiderAO SpiderSpatial

SpiderGear

Figure 1: SpiderFusion modules and their interdependence

DataStore

Noti�cation

Phoenix

Figure 2: SpiderCore toolset components and their interdependency

3KONGSBERG – SpiderFusion

The Notification component provides tools for safe and robust communication between different threads. This is a
necessary basic prerequisite infrastructure for robust multi-thread management.

The DataStore component provides tools for managing common information in computer memory shared by
several processing threads, by preventing them from interfering with each other.

In order to do so, the common memory must be divided into individual sections corresponding to the elements
(«data-objects») of the common data structure of the program. This approach allows the programmers to work
with the native data types and data structure supported by the programming language without paying any parti-
cular attention to sharing this information between parallel threads.

Threads will also need to subscribe for messages (via the Notification component) when the stored value of a parti-
cular data element has been modified by another thread.

The Phoenix component provides functionality for listening for low-level signals from hardware components or
from the operating system, and then transforming them into normal software error messages.

The motivation for this type of transformation is to prevent the program from terminating abruptly. Instead, the
program could finish ongoing activities and then terminate in a controlled manner.

SpiderGUI
SpiderGUI provides functionality for extending the software toolset «Qt».

Qt is a very popular commercial toolset for developing for instance platform independent Graphical User
Interfaces (“GUI”). A GUI is defined as the part of the software that is “visible” on a screen, and hence is used for
communicating information between a program and the operator.

The SpiderGUI extension is mainly focusing on useful tools to
simplify the software development of complex systems with
complex GUIs. This means that SpiderGUI is often used in combi-
nation with components from SpiderCore and SpiderGear.

The Menus component provides functionality for efficient develop-
ment and configuration of the menus of a GUI. It is particularly
useful to be able to configure the menus after the program has been
built. This feature simplifies maintenance, and provides efficient
re-use of menu elements.

The ToolBars component provides functionality for efficient
development and configuration of the toolbars of a GUI. It is parti-
cularly useful to be able to configure the toolbars after the program
has been built. This feature simplifies maintenance, and provides
efficient re-use of toolbar elements.

The Actions component provides tools for management of pre-built functions to be executed in large and complex
systems. One particular “Action” element could be connected to one or more menu toolbar elements.

Menus ToolBars

Actions

Qt

Figure 3: SpiderGUI toolset components
 and their interdependency

4 KONGSBERG – SpiderFusion

SpiderAO
SpiderAO provides powerful tools for management and control of a software science concept called «Application
Objects» («AO»). These are the result of splitting a runtime software program into formal runtime components
(«AO components»). This type of organization is very useful in complex software systems.

Using SpiderAO for this purpose simplifies the configuration of such type of systems and offers simple re-use
between sub-systems and between projects. The Framework
component provides the framework needed for developing and
executing AO-components.

The Configurator component provides functionality for simple and
flexible configuration of AO components, which in turn simplifies
the process of building, maintaining and extending large software
systems.

SpiderSpatial
SpiderSpatial provides various general data structures connected to the geographic space, such as coordinates,
coordinate systems geometries, networks and geographic fields. Furthermore, these structures provide many
general computation functions such as coordinate transformations, triangulation and logical operators.

These are functions with a mathematical complexity beyond the
skills of an average programmer. Hence, by using SpiderSpatial,
you could represent your own structures and perform complex
computations by writing less code without this skill. The code
would also be thoroughly tested and significantly more robust.

SpiderSpatial has been designed according to modern software
development principles. It is heavily influenced by the basic
concepts and data models defined by the ISO-19100 family of
formal international civil standards for geographic information.
These also play the role as base standards for similar civilian
European (CEN) and Norwegian (SOSI) national standards.
SpiderSpatial also uses other ISO standards on the more detailed
level. On the technical side it takes advantage of the large family
of technical and more non-formal standards from OGC (Open
Geospatial Consortium). Finally, SpiderSpatial supports a small
number of open military format standards for information inter-
change, such as STANAG-3809 (DTED) standard for terrain elevation
data also used on the civilian side.

SpiderSpatial is particularly useful as supplement of geospatial
structures and functionality to graphical display systems.
Together, they may form a basic infrastructure for map display
systems.

SpiderSpatial is also often used as a support library for geospatial
computation functions, such as line-of-sight or navigation
functions.

Figure 5: SpiderSpatial toolset
 components and their
 interdependency

Figure 4: SpiderAO toolset components
 and their interdependency

Con�gurator

Framework

Fields

GeographicGeometries

SpatialReferences

SpatialTypes

5KONGSBERG – SpiderFusion

SpatialTypes defines a large number of data structures for representation of geospatial information within the
context of the programming language C++. This means that it provides many of the basic structural building
blocks needed for geospatial information. It puts a lot of emphasis on data type safety in order to protect the
programmer against making trivial errors.

SpatialReferences provides representation of the most important spatial reference systems and coordinate systems
used by geospatial information. The most important benefit is the large number of computational functions
available for coordinate conversions between reference systems, and for geometrical constructions. These functions
constitute the basic building blocks needed for processing of geospatial information. It puts a lot of emphasis on
hiding most of the complex mathematics behind the computation functions.

GeographicGeometries defines a large number for formal geometries used for geo-referencing real-world objects
from the application domain. Geometries may also have topological properties, such as network properties
representing road network and support navigation within road networks. Geometries also provide useful analy-
sis functions, for instance for computing overlaps between two or more geometries. The representation of the
geometries is very accurate on the ellipsoid-shape globe, and also provides conversions of geometries to other
spatial reference systems.

Fields defines various data structures for representing values varying over the geographic space, such as
precipitation or altitude. The main benefit is representing complex information without any performance penalty.
Fields have traditionally been the preferred analysis approach for geographic information by allowing different
field types interact spatially with each other.

SpiderGear
SpiderGear provides basic functionality for the interaction between own software and its “platform” (i.e. hardware,
programming language and operating system). The interaction could then be made independent of the under-

lying platform type. This means that the
software could be moved smoothly between
different platform types and platform versi-
ons without any modification.

The tools available in this module are used
by other modules in SpiderFusion and other
components of SpiderGear, as well as by soft-
ware using SpiderFusion.

The Exceptions component provides functio-
nality for managing error situations during
runtime. The component utilizes the powerful
“exceptions” concept available in modern
programming languages. The component
provides tailoring of own software, as well
as help for implementing efficient error
handling and error tracing.

The Tools component provides a colle-
ction of various tools being too small for
being organized as separate components.
The tools are mainly useful as “every-
day tools” for the programmer. Most
of them could be considered as useful
extensions of the programming language
making the programming work easier and
more robust.

TemporalReferences

Parameters

Actions TemporalTypes

Serialization

NativeTypes OpenCLDiagnostics

Platform

Identi�ers

ToolsExceptions

Figure 6: SpiderGear toolset components and their
 interdependency

6 KONGSBERG – SpiderFusion

The Platform component provides functionality simplifying the interaction with the hardware or the operating
system. This is particularly useful if you plan to run the software on different operating system types such as
Windows and Linux. Hence, the component provides a neutral interface, preventing us from changing our own
software during the porting from one operating system to another.

The Diagnostics component provides software performing runtime status diagnosis. This is primarily meant as
an efficient tool to be used during the software development phase, but it could also be used for discovering error
during normal software execution.

NativeTypes is a small component providing platform independent representation of the programming language
native data types.

Identifiers is a small component providing generation of standardized identifiers for software objects. An identifier
is defined as a unique code (analogue to a social security number) representing this particular software object.
Identifiers are often used in modern programming, and in particular in connection with distributed systems. The
various identifier types are defined by international standards.

The OpenCL component has its name from an open source standardized technology for programming of modern
processors designed for massive parallel processing, such as graphic processors. These processors could be used to
obtain extreme computing performance in dedicated situations. The OpenCL component provides software tools
simplifying programming of this technology in a platform independent way.

The Parameters component provides tools for simplifying the programming of some basic and often used software
patterns.

The Serialization component provides tools for simplifying the process of storing and restoring runtime data to
and from devices for permanent storage.

The Actions component provides tools for organizing of ready-to-use functions to be executed in large and
complex software environments.

The TemporalTypes, TemporalReferences and TemporalGeometriers components provide functionality for
representing and processing “time”. An example is the representation of “time” in different reference systems
such as clocks, time zones and calendars. In addition, it provides functionality for comparison and conversions of
point-in-time and periods.

References:
ISO: http://www.iso.org
CEN: http://www.cen.eu
SOSI: http://www.statkart.no
OGC: http://www.opengeospatial.org
ESRI: http://www.esri.com

Contact person:
Kari Anne Sandengen
kari.anne.sandengen@kongsberg.com

