www.kongsberg-mesotech.com

KONGSBERG

Upstream Bull Nose

Downstream Bull Nose

Acoustic distortion on both underwater sides of the pier is due to the close proximity of the sonar head to the structure

Pier 4 Independence Bridge, Bay City, Michigan

Main Channel View

North View

Sonar images created using a Kongsberg Mesotech High Resolution Scanning Sonar Head with a 0.9° X 30° beam; the sonar head was both tripod and pole mounted to achieve the riverbed and vertical scans.

THE FULL PICTURE

www.kongsberg-mesotech.com

Equipment configuration for riverbed and vertical visualization of structures:

- Laptop computer with MS 1000 PC-based Sonar Software
- MS 1000 Interface Unit
- Kevlar deployment cable
- 675 kHz High Resolution Scanning Sonar Head with fan beam transducer (or Multi Frequency High Resolution Sonar Head)
- Tripod
- Sonar Pole Mount

Additional equipment considerations:

- Surveyors tape
- Marker
- Daylight-viewable second monitor
- ½" high quality rope (several 100' lengths) to wrap around the pier if needed
- **DGPS**
- 15 pound lead weights (3)

To scan a vertical structure the sonar head is mounted horizontal and is typically positioned 3' - 5' (1- 1.6m) below the water surface.

Scanning Sonar Pole Mount

Additional information:

- For vertical visualization of the substructural elements the sonar transducer is typically positioned 3'-4' away; the body of the sonar head needs to be normal to the plane being imaged.
- Record a waterline elevation measurement at each scan location so the sonar data can be referenced to a local vertical datum level.