

EM 300

Multibeam echo sounder Complete version

EM 300 Multibeam echo sounder

Maintenance manual - Complete version

Note

Kongsberg Maritime AS makes every effort to ensure that the information contained within this document is correct. However, our equipment is continuously being improved and updated, so we cannot assume liability for any errors which may occur.

Warning

The equipment to which this manual applies must only be used for the purpose for which it was designed. Improper use or maintenance may cause damage to the equipment or injury to personnel. The user must be familiar with the contents of the appropriate manuals before attempting to install, operate or maintain the equipment.

Kongsberg Maritime AS disclaims any responsibility for damage or injury caused by improper installation, use or maintenance of the equipment.

Copyright

© 2004 Kongsberg Maritime AS

The information contained within this document remains the sole property of Kongsberg Maritime AS. No part of this document may be copied or reproduced in any form or by any means, and the information contained within is not to be communicated to a third party, without the prior written consent of Kongsberg Maritime AS.

Contact information

Support:	hydrographic.support@kongsberg.com
Sales:	subsea@kongsberg.com
24 hrs support telephone:	+47 99 20 38 01

Kongsberg Maritime AS Strandpromenaden 50

P.O.Box 111 N-3191 Horten, Norway Telephone: +47 33 02 38 00 Telefax: +47 33 04 47 53 **www.kongsberg.com** E-mail: subsea@kongsberg.com

Sections

This book is the Maintenance manual for the EM 300 multibeam echo sounder. It describes how to perform intermediate maintenance on the system.

The manual is divided into chapters that describe the different versions delivered.

1 Introduction

This section presents a general introduction to the echo sounder system, and defines the maintenance philosophy. Refer to page 1.

2 Technical specifications

This chapter presents the main technical specifications. Refer to page 7.

3 Cable layout and interconnections

This chapter describes the cabling, and details the necessary cable specifications. Refer to page 11.

4 Transceiver Unit 125-210131

This chapter describes the design and operation of the Transceiver Unit with registration number 125-210131. Each circuit board is explained, as well as overall block diagrams and the theory of operation. Refer to page 41.

5 Transceiver Unit 125-211293

This chapter describes the design and operation of the Transceiver Unit with registration number 125-211293. Each circuit board is explained, as well as overall block diagrams and the theory of operation. Refer to page 101.

6 Transceiver Unit 125-218182

This chapter describes the design and operation of the Transceiver Unit with registration number 125-218182. Each circuit board is explained, as well as overall block diagrams and the theory of operation. Refer to page 161.

7 Raw Data Logger (optional)

This chapter describes the design and operation of the Raw Data Logger. Refer to page 213.

8 Troubleshooting

This chapter provides basic procedures for automatic and traditional troubleshooting. Refer to page 215.

9 Replacement procedures

This chapter explains how to perform replacement of the line replaceable units (LRU). Refer to page 271.

10 Datagram formats

The formats for data input and output to and from the EM Series multibeam echo sounders are described here. Refer to page 283.

11 System administration

This chapter provides basic information useful for the EM 300 system supervisor. Refer to page 329.

12 Spare parts

This chapter provides a listing of the line replaceable units with illustrations and order numbers. Refer to page 367.

13 Drawing file

Remarks

References

Further information about the EM 300 system supplied to Complete version may be found in the following manuals:

- EM 300 Operator manual
- EM 300 Installation manual

The reader

This maintenance manual is intended to be used by a trained maintenance technician or engineer, with experience of electronic and digital circuitry, computers and electromechanical design. The level of information is based on Simrad's maintenance philosophy: The onboard technical personnel shall, with the help of the documentation and the system's built-in test functions, be able to identify malfunctions, locate the fault, and replace major parts, modules and components on the "Line Replaceable Unit" (LRU) level. He/she will however not attempt to repair the LRUs.

Note

This manual is issued according to a registered distribution list. In the event of changes to this manual, only authorized copies with copy numbers will be updated.

Table of contents

1	INT		1
	1.1	Overview	1
	1.2	Maintenance philosophy	1
	1.3	System description	3
		Overview	3
		Key features	3
	1.4	Note about changing AC supply voltage	6
2	TEC	CHNICAL SPECIFICATIONS	7
		Interfaces	7
		Physical properties	7
		Power requirements	8
		Restrictions for use - limitations	9
		Surface finish	9
		Environmental specifications	9
		System performance data	9
3	CAI	BLE LAYOUT	11
	3.1	Introduction	11
	3.2	System cabling	12
		Cable layout	12
		Shipyard and system cables	12
		Operator Station cables	13
		Transceiver Unit cables	17
		Generic RS-232 serial line (DCE)	20
		Generic RS-232 Serial line	21
		Generic RS-232 Serial line	22
		Generic coax cable	23
		Sound speed probe interface	24
		EM Remote synchronisation and On/Off	25
		Generic RJ45 extender	26
		Standard AC power cable	27
		Ethernet with RJ45	28
		Standard VGA cable	29
		Keyboard cable	30
		Mouse or pointing device cable	31
		Centronics printer cable	32
		EM 300 Synchronization	33

	3.3	Transducer cables	34
		Introduction	34
		Transmit array cable markings	35
		Receive array cable markings	36
6	TR/	ANSCEIVER UNIT 125-218182	41
	6.1	Description and main functions	41
		Overview	41
	6.2	Transceiver Unit 125-218182	42
		The Processing Rack	46
		The Receiver Rack	48
		The Transmitter Rack	49
	6.3	Theory of operation	50
		Overview	50
		Simplified block diagram	50
		Control functions	51
	6.5	Circuit board descriptions	54
		Overview	54
	6.4	Processing rack details	55
		Location	55
		Circuit boards and modules	55
		4-Ports Serial Line Board (C114P)	56
		Beamformer & Signal Processor (BSP)	58
		Ethernet Adapter	61
		ROM board	63
		Control Processor Unit board	64
		Processing Unit Power Supply	69
		Motherboard	71
	6.6	Receiver rack details	72
		Location	72
		Circuit boards and modules	72
		Transmitter/Receiver Board (TRB)	73
		Low Voltage Power Unit (LVPU)	76
		High Voltage Power Unit (HVPU)	79
		Signal Processor Board (SPB31)	80
	ć –	Receiver Backplane (RXBP)	86
	6.7	Transmitter rack details	92
		Location	92
		Circuit boards and modules	92
		64-Channel Transmitter (TX64)	93

		Transmitter Backplane (TXBP)	97
6	TR	ANSCEIVER UNIT 125-218182	101
	6.1	Description and main functions	101
		Overview	101
	6.2	Transceiver Unit 125-218182	102
		The Processing Rack	108
		The Receiver Rack	110
		The Transmitter Rack	111
	6.3	Theory of operation	112
		Overview	112
		Simplified block diagram	112
		Control functions	113
	6.5	Circuit board descriptions	116
		Overview	116
	6.4	Processing rack details	117
		Location	117
		Circuit boards and modules	117
		4-Ports Serial Line Board (C114P)	118
		Beamformer & Signal Processor (BSP)	120
		Control Processor Unit board	123
		Ethernet Adapter	128
		Processing Unit Power Supply	130
		Motherboard	133
	6.6	Receiver rack details	134
		Location	134
		Circuit boards and modules	134
		Transmitter/Receiver Board (TRB)	135
		Low Voltage Power Unit (LVPU)	138
		High Voltage Power Unit (HVPU)	141
		Signal Processor Board (SPB31)	142
		Receiver Backplane (RXBP)	148
	6.7	Transmitter rack details	152
		Location	152
		Circuit boards and modules	152
		64-Channel Transmitter (TX64)	153
		Transmitter Backplane (TXBP)	157
6	TR	ANSCEIVER UNIT 125-218182	161
	6.1	Description and main functions	161
		Overview	161

6.2	Transceiver Unit 125-218182	162
	The Processing Rack	167
	The Transmitter Rack	169
	The Receiver Rack	170
6.3	Theory of operation	171
	Overview	171
	Simplified block diagram	171
	Control functions	172
6.4	Processing rack details	175
	Location	175
	Circuit boards and modules	175
6.5	Circuit board descriptions	176
	Overview	176
	Serial Line Board (CI-104JS)	177
	Beamformer & Signal Processor (BSP)	179
	VIPer 629 Control Processor Board	182
	Processing Unit Power Supply	183
	Motherboard	186
6.6	Receiver rack details	187
	Location	187
	Circuit boards and modules	187
	Transmitter/Receiver Board (TRB)	188
	Low Voltage Power Unit (LVPU)	191
	High Voltage Power Unit (HVPU)	194
	Signal Processor Board (SPB31)	195
	Receiver Backplane (RXBP)	201
6.7	Transmitter rack details	205
	Location	205
	Circuit boards and modules	205
	64-Channel Transmitter (TX64)	206
	Transmitter Backplane (TXBP)	210
RA\	N DATA LOGGER	213
7.1	Description and main functions	213
	Overview	213
TRC		215
8.1	Messages	215
	Introduction	215
	Setup messages	217
	Launchpad messages	225

7

8

		ESO messages	247
	8.2	Sound Speed Profile Editor messages	251
		Sound Speed Profile Editor messages	251
	8.3	Ping Display messages	254
		Ping Display messages	254
	8.4	Hardware messages	255
		Hardware messages	255
	8.5	CPU CMOS SETUP	257
		Setup for SSC-486H	257
		Setup for SSC-5x86H	259
	8.6	CMOS SETUP - standard Processing Unit	262
		Setup for VIPer	262
	8.7	CMOS SETUP - Processing Unit	268
		Setup for Smartio CI-104JS	268
		SmartIO serial card and SSC-5x86H AND SCC-4x86H	268
		SmartIO serial card and VIPER CPU card	269
9	REP	PLACEMENT PROCEDURES	271
	9.1	Introduction	271
		Overview	271
		Tools required	272
	9.2	Transceiver Unit procedures	273
		Overview for Transceiver Unit 125-210131	273
		Overview for Transceiver Unit 125-211293	273
		Overview for Transceiver Unit 125-218182	274
		Circuit boards and modules	275
		Fan drawers	276
		Heater element	276
		High Voltage Power Supply	276
		AC mains circuit breaker	277
		AC mains filter	278
		Fuse replacement	278
		TX64 Fuse replacement	279
		Software replacement	280
		Fan drawers	282
10	DAT	FAGRAM FORMATS	283
	10.1	Introduction	283
	10.2	Presentation format	283
	10.3	Input datagrams	284

		Introduction	284
		Position	284
		Attitude data	292
		Clock	296
		Sound Speed	297
		Depth input from single beam echo sounder	301
		Remote control	302
		Introduction	304
		Depth	305
		Raw range and beam angle	308
		Seabed image	309
		Central beams echogram	310
		Position	311
		Height	313
		Tide	314
		Attitude	314
		Heading	315
		Mechanical transducer tilt	316
		Clock	317
		Surface sound speed	317
		Sound speed profile	318
		Kongsberg Maritime SSP output	319
		Single beam echo sounder depth	319
		Runtime parameter	320
		Installation parameters	324
11	SYS	STEM ADMINISTRATION	329
	11.1	Introduction	329
		Passwords	330
		EM 300 Installation setup	330
	11.3	EM 300 File system	331
		Introduction	331
		Survey files	331
		Sound speed profiles	331
		Absorption coefficient file	332
		Workstation I/O	332
		Echo sounder parameters	332
		BIST files	333
		Logfiles	334
		Operator configuration files	334
			201

		Survey jobs	335
		TOC files	335
	11.4	File formats	336
		Introduction	336
		Survey format and I/O library	336
		The survey format	336
	11.5	Survey Predefined Files	353
		Introduction	353
		File locations	353
		Using the Survey Predefined Files	353
	11.6	Survey format conversion tools	354
		Introduction	354
	11.7	Projection data	355
		Scope and purpose	355
		Projection overview	355
		Projection protocol	355
		Notes	357
	11.8	Dynamic Projection Library	359
		Introduction	359
		Overview	359
		Dynamic projection library definitions	359
		Dynamic projection library protocol	359
		Example	360
		Notes	365
12	SPA	RE PARTS	367
	12.1	Overview	367
	12.2	Spares data presentation	367
		Spares table	367
		Parts list codes	368
	12.3	Transceiver Unit 125 - 210131	369
		Overview	369
		Processing Rack	370
		Receiver Rack	372
		Transmitter Rack	373
	12.4	Transceiver Unit 125 - 211293	374
		Overview	374
		Processing Rack	375
		Receiver Rack	377
		Transmitter Rack	378

	12.5 Transceiver Unit 125 - 218182	379
	Overview	379
	Processing Rack	380
	Receiver Rack	382
	Transmitter Rack	383
13	DRAWING FILE	385
	13.1 Introduction	385
	13.2 Drawing list	385

Document logistics

Rev	Date	Written	Checked	Approved
А	09.01.04	EGj	GFS	KN
В				
С				
D				
E				
F				
G				

(The original signatures are recorded in the company's logistic database.)

Rev	Comments
A	Original issue - complete version. It contains information about the three different versions that have been made.
В	
С	
D	

To assist us in making improvements to the product and to this manual, we would welcome comments and constructive criticism. Please send all such - in writing or by e-mail - to:

Kongsberg Maritime AS Documentation Department P.O.Box 111 N-3191 Horten Norway *or e-mail:*

simrad.documentation@simrad.com

High voltage safety warning

Precautionary measures

The voltages used to power this equipment are potentially lethal. Even 110 volts can kill. Whenever possible, the following precautionary measures must be taken before any work is carried out inside the equipment:

- Switch off all high-voltage power supplies.
- Check the operation of any door interlocks and any other safety devices.
- Completely discharge all high-voltage capacitors.

It should be noted that interlocks and safety devices are normally located only at regular access points, and high voltages may be exposed during dismantling.

Never work alone on high-voltage equipment!

First aid in the event of electric shock

Normally, even a high voltage electric shock will not kill instantly. The victim can still be revived even when his breathing and heart-beat have ceased.

Could YOU save someone's life?

In the event of electric shock, the correct actions, performed quickly may well save the victim's life. Make sure you know what to do!

Immediate action

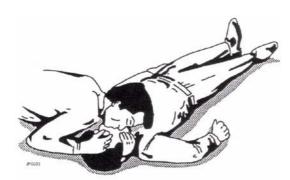
While shouting for help, remove the source of power from the victim. Switch off the supply if possible, or using a dry, non-conductive material (rubber gloves, broom handle etc.) to insulate yourself, separate the victim from the source. If the voltage exceeds 1000 volts, switch off the supply and be ready to catch the victim. Take care- do not become a victim yourself.

Commence first aid on the spot. Continue to shout for assistance till someone arrives.

1 Lay the victim flat on his back and loosen any tight clothing (collar, tie, belt etc.).

- 2 Open his mouth and check for and remove any false teeth, chewing gum etc.
- 3 Check if the victim is breathing. If not, check if his heart is beating. The pulse is normally easily found in the main arteries of the neck, either side of the throat, up under the chin.

If his heart is beating but he is not breathing, commence artificial respiration. If the victim's heart is not beating, commence external cardiac massage (ECM). Continue to shout for assistance till someone arrives.


External cardiac massage

- 1 Kneel beside the victim. Place the heel of one hand in the centre of his chest, at a position half way between the notch between the collar-bones at the top of his chest, and the dip in the breast-bone at the base of his rib cage. Place the other hand on top of the first.
- 2 Keeping the arms straight and using your entire weight, press down rapidly so that the breast bone is depressed four- five cm, then release the pressure. Repeat rhythmically at a rate of one cycle per second. This will be hard work, but keep going. His life depends on YOU. Do not worry about breaking his ribs - these will heal if he survives.

Artificial respiration

- 1 Kneel besides the victim's head. Place one hand under his neck and lift, allowing his head to fall back. This will lift his tongue and open the air passage in his throat.
- 2 Place the palm of the hand on his forehead to maintain the "chin-up" position.
- **3** Using the index finger and thumb of the same hand, pinch the victim's nostrils closed. Open his mouth.
- 4 Take a deep breath and cover his mouth with yours. Blow steadily into his lungs to expand his chest. Remove your mouth from his to allow the air to escape from his chest. You should be able to see his chest deflate.
- **5** Repeat the "inflation-deflation" cycle at a rate of about 12 cycles per minute till the victim begins to breath normally again.

Combining ECM and artificial respiration

If you are alone, perform **one** cycle of artificial respiration for every **five** cycles of ECM. This will be hard work, but keep going. His life depends on you!

If there are other people available to help, one should perform the ECM while one performs the artificial respiration for every five cycles of ECM. It will be much more efficient with two people.

Once the victim's heart is beating and he is breathing, roll him onto his side and support him in that position. As consciousness returns he may vomit, and this will allow any liquid to drain out of his mouth. Remove the victim to a hospital as soon as possible, but do not interrupt the artificial respiration and ECM cycles till his heart beat and breathing returns.

If started quickly and performed correctly, the resuscitation methods described will keep a sufficient volume of oxygenated blood flowing trough the victims body to allow full recovery.

Proficiency in the resuscitation methods can only be achieved trough training. All personnel concerned should attend courses on a regular basis. Remember, someone's life could depend on you.

Do you know what to do?

Blank page

1 INTRODUCTION

1.1 Overview

This is the maintenance manual for the EM 300 multibeam echo sounder system.

Note

This manual describes all versions of the EM 300.

The manual contains detailed descriptions of each of the units in the system. Each circuit board and mechanical assembly is described. The manual also describes the troubleshooting process based on the Built-In Self test (BIST) software, and it includes procedures for disassembly and reassembly of the replaceable items.

The manual will also list the unique boards in the different system delivered.

This manual does not describe the maintenance of the Operator Station and the peripheral devices (printers, plotters and sensors). For information about these items, refer to the applicable manufacturer's documentation.

1.2 Maintenance philosophy

Kongsberg Maritime AS defines three levels for maintenance manuals:

Organizational - You will only perform limited preventive and corrective maintenance on the system. There is no need for technical education or training, and no need for any instruments. Typical tasks are exterior cleaning, or changing fuses.

Intermediate - You will perform overall preventive and corrective maintenance on the system. It is recommended that you are an educated engineer with experience from computerized design and mechanical systems. It is further expected that you can use standard electronic instruments, such as an oscilloscope. You should be trained by Kongsberg Maritime to perform maintenance on the system. Typical tasks may include troubleshooting, testing and circuit board replacement. **Depot -** You will perform detailed maintenance on the system and on the circuit boards and modules. You must be an educated engineer with experience of computerized design and mechanical systems. It is further expected that you can use standard electronic instruments, such as an oscilloscope. You should be trained by Kongsberg Maritime to perform maintenance on the system. Typical tasks are circuit board repair.

Note

This maintenance manual is prepared for the intermediate level.

1.3 System description

Overview

The EM 300 multibeam echo sounder is designed to do mapping from 10 m depth to beyond the continental rises, including the shallower ocean basins. It operates down to more than 5000 m depth with swath widths up to about 5000 m. Small transducers and compact electronics make the installation easy, and the system accuracy is generally well within the IHO standards.

The design of the EM 300 is based on more than 50 years of hydrographic experience with echo sounders, sonars and underwater positioning for civilian and military use. Kongsberg Maritime is today a part of the Kongsberg Group, a world wide organisation supplying advanced instrumentation for civilian, research and military maritime communities.

The EM 300 is a complete system. All necessary sensor interfaces, data displays for quality control and sensor calibration, seabed visualization, and data logging are a standard part of the system, as is integrated seabed acoustical imaging capability (sidescan).

Including a shallow water multibeam echo sounder with the EM 300 system will give a total system solution meeting IHO requirements for all depths. The EM 3000 multibeam echo sounder is the recommended additional system, with the advantages of having the same user interface on a common operator station, and common spare parts.

Key features

Operating frequency and coverage sector

The nominal sonar frequency is 30 kHz with an angular coverage sector of up to 150 degrees and 135 beams per ping as narrow as 1 degree. Achievable swath width on a flat bottom will normally be up to 5.5 times the water depth. The angular coverage sector and beam pointing angles may be set to vary automatically with depth according to achievable coverage. This maximizes the number of usable beams. The beam spacing is normally equidistant with equiangle available.

Transmission

The transmit fan is split in several individual sectors with independent active steering according to vessel roll, pitch and yaw. This place all soundings on a "best fit" to a line perpendicular to the survey line, thus ensuring a uniform sampling of the bottom and 100% coverage. The sectors are frequency coded (30 to 34 kHz), and they are all transmitted sequentially at each ping. The sector steering is fully taken into account when the position and depth of each sounding is calculated, as is the refraction due to the sound speed profile, vessel attitude and installation angles. Pulse length and range sampling rate are variable with depth for best resolution, and in shallow waters due care is taken to the near field effects.

The ping rate is mainly limited by the round trip travel time in the water up to a ping rate of 10 Hz.

Transducer arrays

The EM 300 transducers are linear arrays in a Mills cross configuration with separate units for transmit and receive. The arrays are divided into modules, these may be replaced by a diver. The number of modules used (and hence the beamwidth) may be adjusted according to particular installation requirements. For both arrays 1 and 2 degrees beamwidths are standard options, and 4 degrees beamwidth is available for the receive array. The resulting array lengths are between 0.8 and 3.3 m.

A combination of phase and amplitude detection is used, resulting in an instrument measurement accuracy practically independent of beam pointing angle.

Post-processing

Postprocessing software is available from both Kongsberg Maritime and third-party suppliers. A world-wide marketing and service organization having many years of multibeam experience is in place for supporting the EM 300.

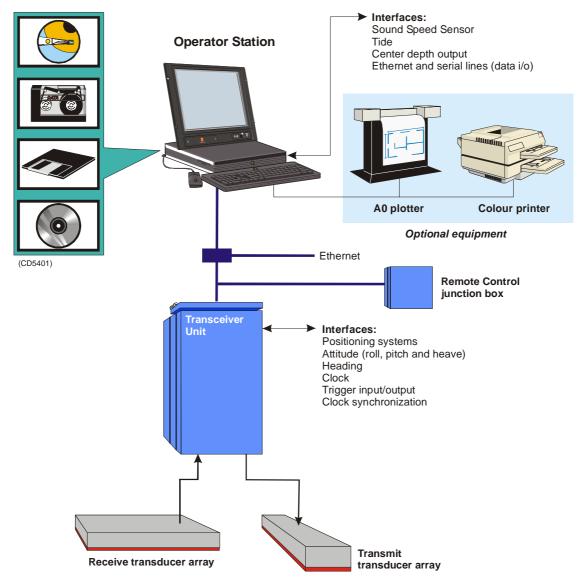


Figure 1 System drawing

1.4 Note about changing AC supply voltage

The EM 300 is wired for 230 Vac when it comes from the factory. If it is desireable to change to 115 Vac, do the following:

- The Processing Rack power must be rewired.
- Switch LVPS (Low Voltage Power Supply) to 115 Vac.
- Switch HVPS (High Voltage Power Supply) to 115 Vac.
- The 220 Vac fans must be changed to 115 Vac type.
- \rightarrow Refer to page 284.

2 TECHNICAL SPECIFICATIONS

Note

Kongsberg Maritime is engaged in continuous developments of its products and reserves the right to alter specifications without prior notice.

Interfaces

- Serial lines with operator adjustable baud rate, parity, data length and stop bit length for:
 - Motion sensor (roll, pitch, heave and optionally heading) in format supported by sensors from Applied Analytics, iXSEA, Seatex and TSS
 - Gyrocompass in either NMEA 0183 HDT or SKR82/LR60 format
 - Positions in either Simrad 90, NMEA 0183 GGA or GGK format
 - External clock in NMEA 0183 ZDA format
 - Sound speed profile
 - Sound speed at transducer
 - Sea level height (tide)
 - Output of depth straight down in NMEA 0183 DPT format
- Interface for 1 PPS (pulse per second) clock synchronisation signal
- Optional SCSI interface for tape drive (DAT or Exabyte), additional disk drives and optional greyscale recorder for seabed image
- Parallel interface for Postscript colour graphics printer/plotter
- Ethernet interface for input of sound speed profile data and output of all data normally logged to disk and/or tape

Physical properties

Transmit transducer

- Module:
 - Length: 371.5 mm
 - Width: 350 mm (add 130 mm for frame)
 - Height: 160 mm (add 38 mm for frame)
 - Weight: 32 kg + 15 kg cables
- Frame length: 1505 mm (2 degr) or 2992 mm (1 degr)

Receive transducer

- Module:
 - **Length:** 406 mm
 - Width: 200 mm (add 130 mm for frame)
 - Height: 160 mm (add 38 mm for frame)
 - Weight: 16 kg + 5 kg cables
- Frame length: 829 mm (4 degr), 1643 mm (2 degr), or 3271 mm (1 degr)

Transceiver Unit

- Height: 1760 mm
- Width: 600 mm
- **Depth:** 630 mm
- Weight: Approximately 197 kg

Operator Station

Dimensions and weight will depend upon choice of workstation model, thus the following figures serve as a guideline only.

- Chassis:
 - Height: 118 mm
 - Width: 445 mm
 - **Depth:** 464 mm
 - Weight: Approximately 16 kg
- Monitor (CRT type, 21 inch display):
 - Height: 487 mm
 - Width: 475 mm
 - Depth: 506 mm
 - Weight: Approximately 31 kg
- External storage unit:
 - Height: 68 mm
 - Width: 190 mm
 - **Depth:** 310 mm
 - Weight: Approximately 3 kg

Power requirements

• **Fuse:** The single phase supply must be protected with 16A slow-blow fuses.

•	Operational voltage and frequency:
	 Transceiver Unit: 115 or 230 Vac (±10%), < 300 W, 47 to 63 Hz, 10 A slow blow fuse input.
	For 110 Vac operation, please contact <hydrographic.support@kongsberg.com>.</hydrographic.support@kongsberg.com>
	 Operator Station: 110 or 240 Vac (±10%), < 300 W, 47 to 63 Hz, 16 A slow blow fuse input.
•	Acceptable transients:
	- Short time (max 2 sec): ±25%, 42 to 69 Hz
	- Spikes (max 50 μS): < 1000 V
•	Power interrupts: Menu settings, all parameters and the sound speed profile are stored on the Operator Station's harddisk during operation, so operation can continue after power interruption. However, the file system may be damaged, so the use of an uninterruptable power supply (UPS) is higly recommended.

Restrictions for use - limitations

No specific restrictions apply.

Surface finish

All cabinets are painted. System units exposed to salt water must be treated accordingly.

Environmental specifications

- Operating temperatures:
 - **Transceiver Unit:** 0 to +45°C
 - **Operator Station:** 0 to +40°C
- Storage temperatures:
 - Transceiver Unit: -30 to +70°C
 - **Operator Station:** -30 to +70°C

System performance data

- Main operational frequency: 30 kHz
 - Frequencies in the range of 30 to 34 kHz are employed to code the different transmit sectors.
- Number of beams for each ping: 135
- **Beamwidths:** 1x1, 1x2, 2x2 or 2x4 degrees
 - Other beamwidth combinations are are possible in accordance with the number of transducer modules installed.

Note

- Beam spacing: Equidistant or equiangle
- Coverage sector: Up to 150 degrees
- Transmit beam steering: Stabilized for roll, pitch and yaw
- Receive beam steering: Stabilized for roll
- Maximum ping rate: 10 Hz
- **Depth range from transducers:** 10 to 5,000 meters
- **Depth resolution:** 1 to 16 cm
- **Pulse lengths:** 0.7, 2, 5 and 15 ms
- Range sampling rate: 4.5 kHz (17 cm)

3 CABLE LAYOUT

3.1 Introduction

The standard cables used between the EM 300 system units and between the units and their external devices are shown here. For larger installations where the EM 300 is a subsystem, the cables will also be shown in the cable layout plan and interconnection diagram specific for the vessel into which the system is installed.

Note All cable connections may have to be made in accordance with the guidelines laid down by the vessel's classification society.

If no such guidelines exist, Kongsberg Maritime AS recommends that Det norske Veritas (DnV) Report No. 80-P008 «Guidelines for Installation and Proposal for Test of Equipment» be used as a guide.

852-164892 / A

3.2 System cabling

Cable layout

The interconnection cables are identified on the cable layout drawings. Each cable is then listed in the corresponding list, which refer to the required cable specifications. On the following pages, each cable is identified with the appropriate terminations.

Shipyard and system cables

General

Each individual cable is identified on the cable plan. The cables fall into two categories:

- · Cables provided by the installation shipyard or owner
- System cables supplied with the delivery

Shipyard cables

The cables that must be provided by the shipyard or owner are identified as such in the descriptions. Note that the cable specifications given are the *minimum* specifications.

For each cable, the following information is provided:

- Connection to be made on each end of the cable (including system unit, terminal board identification and plug/socket to be used)
- Number of cores
- Recommended cable type
- Minimum cable specifications

The necessary considerations must be taken to suit special requirements. Kongsberg Maritime accepts no responsibility for damage to the system or reduced operational performance if this is caused by improper cabling.

System cables

Several cables will be supplied with the system. Such cables normally comprise power cables for peripheral equipment, and interconnection cables for computers and/or workstations. These cables will normally be delivered with the units.

Operator Station cables

The illustration and the list below specifies each cable used on the EM 300 Operator Station. References are made to detailed cable drawings.

Note that this information includes several cables that may not be in use on all installations.

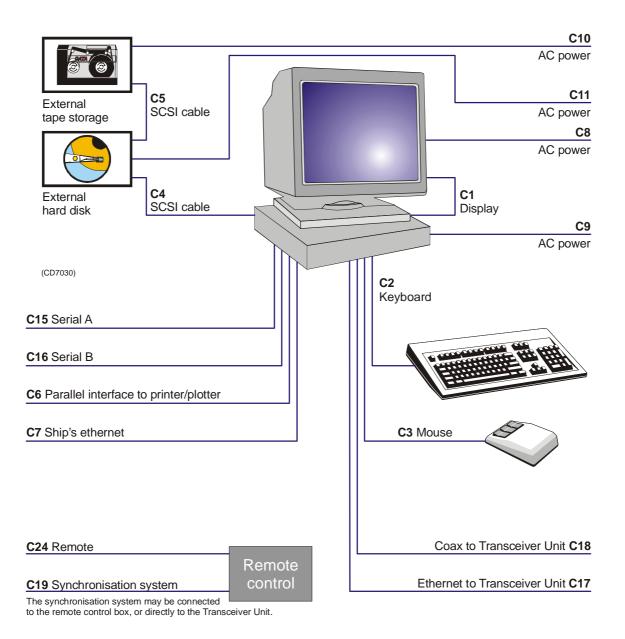


Figure 2 EM 300 Operator Station - Cable plan

C1 - Display

This is a standard VGA cable. It is normally supplied with the display unit.

 \rightarrow Cable details on page 29.

Specific installations may include multiple display configurations with video splitters and/or switches.

C2 - Keyboard

This is a standard keyboard cable. It is normally supplied with the keyboard.

 \rightarrow Cable details on page 30.

C3 - Mouse or pointing device

This is a standard mouse cable. It is normally supplied with the keyboard. Note that different workstation types allow for different mouse connections. On Unix workstations, the mouse is often connected to the keyboard, while most PCs provide a socket on the computer assembly.

 \rightarrow Cable details on page 31.

C4 / C5 - SCSI cables

These cables are used only if the Operator Station is supplied with external SCSI storage devices.

When applicable, the cables are provided by the manufacturer.

C6 - Centronics printer

The Operator Station only provides one parallel interface to plotter <u>or</u> printer. In most cases, plotters and printers are connected directly to the ship's ethernet network.

 \rightarrow Cable details on page 32.

When applicable, the cable is provided by the manufacturer.

C7 - Ship's'ethernet

The Operator Station may be equipped with one or two ethernet interface boards. When two -2- boards are provided, one is used to communicate with the ship's ethernet while the other (C17) is used to communicate with the Transceiver Unit.

 \rightarrow Cable details on page 31 and 28.

The ethernet cable must be provided by the installation shipyard.

C8 / C9 / C10 / C11 - AC power

These are AC mains cables. Note that C10 and C11 are only required if external SCSI storage devices are implemented.

 \rightarrow Cable details on page 27.

All AC mains cables are normally supplied by the manufacturer.

C12 / C13 / C14 - Not used

For future expansion.

C15 - Serial A

This serial line is intended for a sound speed probe, which is normally interfaced by means of a small junction box and a power supply.

If a sound speed probe is not used, the serial line may be used for other purposes.

- \rightarrow Sound speed probe cable details on page 24.
- \rightarrow Standard 9-pin RS-232 serial line details on page 22.

The cables must be provided by the installation shipyard.

C16 - Serial B

This serial line is intended for a tide/depth sensor. If such a sensor is not used, the serial line may be used for other purposes.

 \rightarrow Standard 25-pin RS-232 serial line details on page 20.

 \rightarrow Standard 9-pin RS-232 serial line details on page 22.

The cable must be provided by the installation shipyard.

C17 - Transceiver Unit RJ-45 interface

The Operator Station may be equipped with one or two ethernet interface boards. When two -2- boards are provided, one is used to communicate with the ship's ethernet (C7) while the other (C17) is used to communicate with the Transceiver Unit.

The interface between the Operator Station and the Transceiver Unit is made with <u>either</u> C17 or C18. In some cases two parallel ethernet cables may be used. These are then normally identified as C17A and C17B.

 \rightarrow Cable details on page 28.

The cable must be provided by the installation shipyard.

C18 - Transceiver Unit Coax interface

The interface between the Operator Station and the Transceiver Unit is made with <u>either</u> C17 or C18.

 \rightarrow Cable details on page 23.

When applicable, the cable must be provided by the installation shipyard.

C19 - Synchronisation system

Refer to the Transceiver Unit cabling.

C24 - Remote

Refer to the Transceiver Unit cabling.

Transceiver Unit cables

The illustration and the list below specifies each cable used on the EM 300 Transceiver Unit. References are made to detailed cable drawings.

Note that this information includes several cables that may not be in use on all installations.

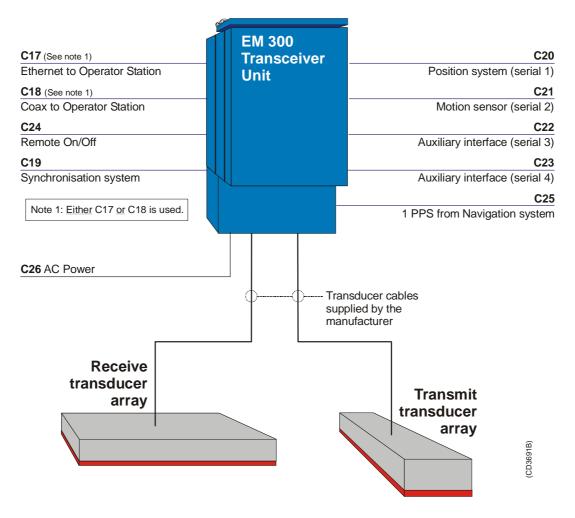


Figure 3 EM 300 Transceiver Unit - Cable plan

C17 - Transceiver Unit RJ-45 interface

Refer to the Operator Station cabling.

C18 - Transceiver Unit Coax interface

Refer to the Operator Station cabling.

C19 - Synchronisation

An external system may be used to synchronise the echo sounder's transmissions. This system is connected to the **Remote** plug on the Transceiver Unit.

In most cases, an external junction box is located in the vincinity of the Operator Station to facilitate on/off control. The synchronisation system may then be connected to this junction box, or directly to the **Remote** plug.

 \rightarrow Cable details on page 25.

The cable must be provided by the installation shipyard.

C20 / C21 / C22 / C23 - Serial lines 1 - 4

The Transceiver Unit is equipped with four serial lines. All connectors are 9-pin male D-connectors. The serial lines are normally set up as follows:

Serial Port 1 - Positioning systems

Serial Port 2 - Motion sensor

Serial Port 3 - Auxiliary 1

Serial Port 4 - Auxiliary 2

 \rightarrow Cable details on page 21.

The cables must be provided by the installation shipyard.

C24 - Remote

In most cases, an external Remote Control junction box is located in the vincinity of the Operator Station to facilitate on/off control. The cable from this box is connected to the **Remote** plug on the Transceiver Unit.

 \rightarrow Cable details on page 25.

The cable must be provided by the installation shipyard.

C25 - 1PPS

This is a timing signal terminated in a coax connector.

 \rightarrow Cable details on page 23.

The cable must be provided by the installation shipyard.

C26 - AC power

These are the AC mains cables to the Transceiver Unit.

 \rightarrow Cable details on page 27.

The cable is provided by the manufacturer.

Transducer cables

The transducer cables are supplied by the manufacturer. Note that the number of transducer cables depend on the chosen system resolution.

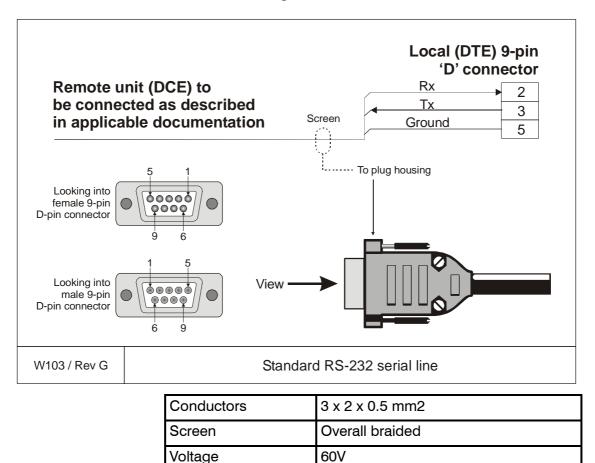
Generic RS-232 serial line (DCE)

This cable described the pin configuration for an RS-232 interface. The Data Circuit terminating Equipment (DCE) end is shown.

1	Shield Received data (Rx)	25 nin Doub connector
2		25-pin D-sub connector
3	Transmitted data (Tx)	Original and complete RS-232 signal
4	Clear to send (CTS)	definition shown. The most commonly used signals are shown in bold.
5	Request to send (RTS)	-
6	DCE Ready	(DCE = Data Circuit terminating equipme
7	Signal ground	
8	Received line signal detect	
9	Reserved for testing	
10	Reserved for testing	
-	Unassigned	
11	Sec. Rx line signal detect	
12	Sec. Request to send	
13	Sec. Rx data	13 1
14	Transmitter signal timing	
15	Sec. Tx data	
16	Rx signal timing (DCE source)	
17	Local loopback	
18	Sec. Clear to send	
19	DTE Ready	25 14
20		-
21	Remote loopback	Looking into a female 25-pin D-pin connector
22	Ring indicator	
23	Data signal rate selector	
24	Tx signal timing (DTE Source)	
25	Test mode	

W102 / Rev. B

RS-232 serial line (DCE)

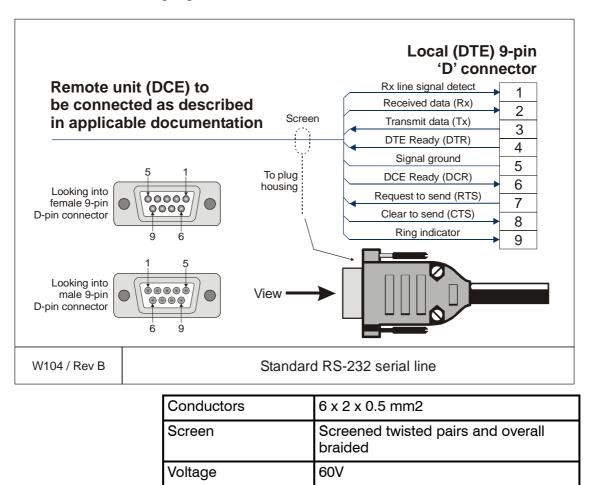

Conductors	XX x 2 x 0.5 mm2
Screen	Overall braided
Voltage	60V
Max.diameter	Set by the plugs

Generic RS-232 Serial line

This cable comprises a multi-purpose serial line. It provides interface with any peripheral unit. One end of the cable connects to the local unit (DTE) with a 9-pin 'D' connector, while the other connects to the peripheral (DCE) as described in the peripheral unit's documentation.

Set by the plugs

Note that this cable does not support all the signals in the standard RS-232 specification.



Max.diameter

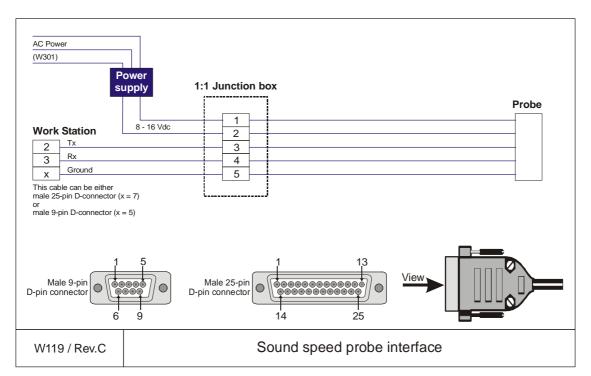
Generic RS-232 Serial line

This cable comprises a multi-purpose serial line. It provides interface with any peripheral unit. One end of the cable connects to the local unit (DTE) with a 9-pin 'D' connector, while the other connects to the peripheral (DCE) as described in the peripheral unit's documentation.

Set by the plugs

Max.diameter

Generic coax cable

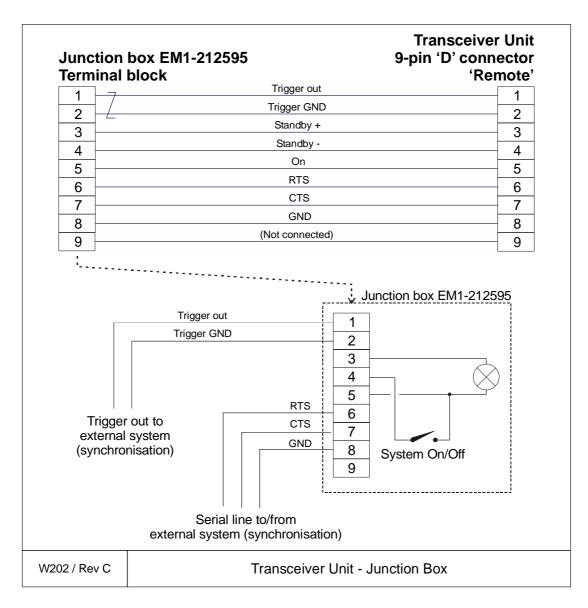

This cable is used for connections to peripheral units or networks.

In the EM 1002, EM 120 and EM 300 systems, this cable connects the 1 PPS timing signal to the Transceiver Unit. It is also possible to use a coax connection between the Transceiver Unit and the Operator Station.

Sound speed probe interface

This cable provides the interconnection between the Processor Unit work station and the sound speed probe. This connection is normally made through a small junction box and with a power supply as indicated in the drawing.

The cable between the junction box and the probe is supplied by the probe manufacturer.


Conductors	2 x 2 x 0.5 mm2
Screen	Overall braided
Voltage	60V
Max.diameter	Set by the plugs

EM Remote synchronisation and On/Off

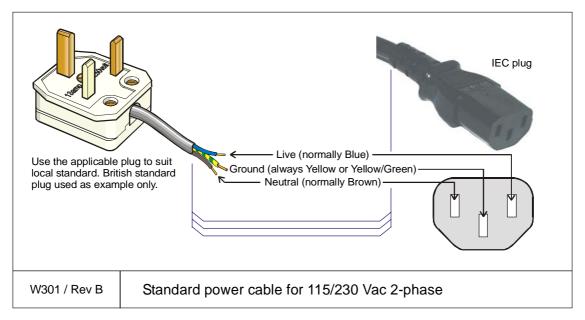
This cable connects the Transceiver Unit to a remote On/Off switch located in a Remote Control junction box (type EM1-212595). The same connection allows trigger output and remote control (synchronisation) with a serial line.

Note

This information is also valid for Remote Control junction box 108-212591.

Conductors	5 x 2 x 0.5 mm2
Screen	Overall braided
Voltage	60V
Max.diameter	Set by the plugs

Generic RJ45 extender

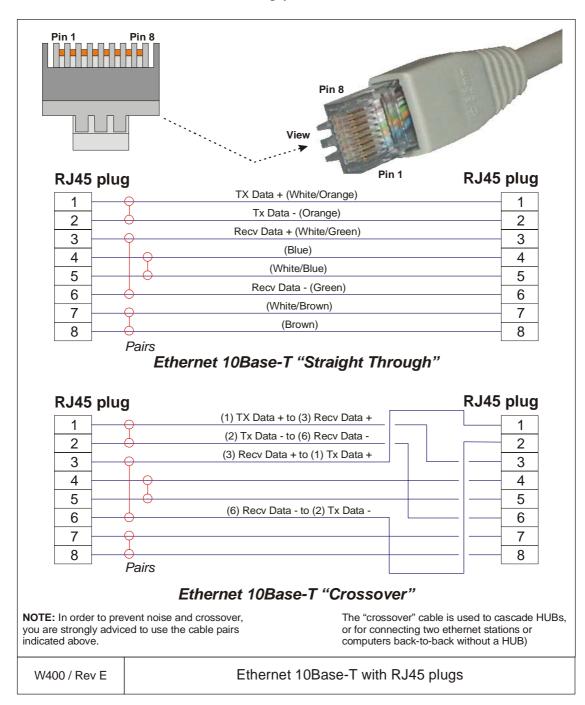

This is a standard Category 5 cable for extension of keyboard, video and mouse.

1 White / Green 1 2 White / Orange 3 3 Orange 6 4 Blue 4 5 White / Blue 5 7 Brown 7 8 Pin 8 8 V222 / Rev. A	RJ-45 connecto Male	or	RJ-45 connector Female
Pin 8 Pin 1	1 2 3 6 4 5	Green White / Orange Orange Blue White / Blue	1 2 3 6 4 5
V222 / Rev. A KVM Extender interconnection	8	Pin 8-	8
	V222 / Rev. A	KVM Extender interc	onnection

Conductors	4 x 2 / twisted pairs
Screen	N/A
Voltage	N/A
Max. diameter	Limited by the plugs

Standard AC power cable

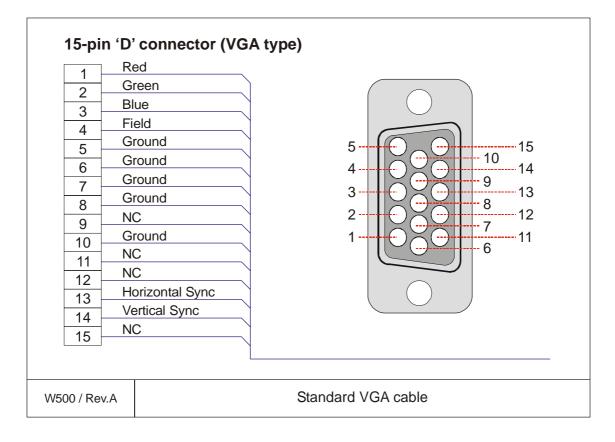
This cable is a standard three-wire power cable. It is commercially available in standard lengths, or may be produced locally to suit the specific installation needs. The instrument end is terminated in a standard IEC female socket, while the other end is terminated in a plug suitable for the local standard.


Note

Different cable colours may be used for the "live" and "neutral" wires. Ground is however always on green/yellow.

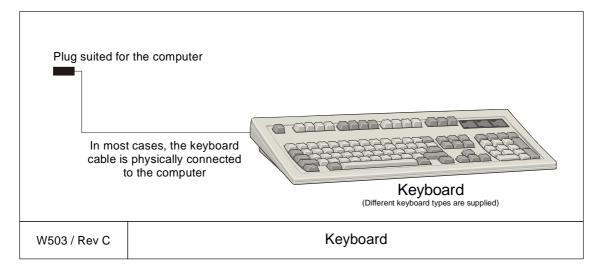
Conductors	2 x 1.5 mm ² + GND
Screen	None
Voltage	750 V
Max. diameter	Set by the plugs

Ethernet with RJ45


This cable contains the Ethernet connection. RJ45 plugs are used to terminate the cable. Note that these plugs must be screened to comply to EC rules.

Standard VGA cable

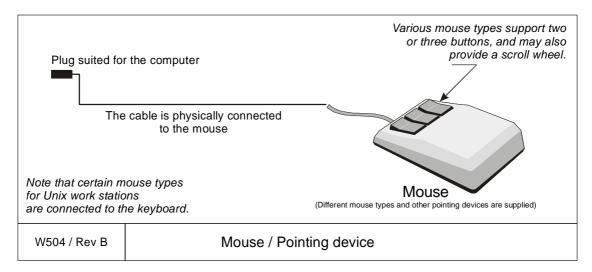
This is a standard display cable used to connect the video signals.


The cable is normally physically fastened to the display unit, and it is provided with the plug(s) readily attached.

Keyboard cable

This is a standard keyboard cable. In most cases, the cable is physically connected to the keyboard. It is terminated in a plug suited to fit the computer.

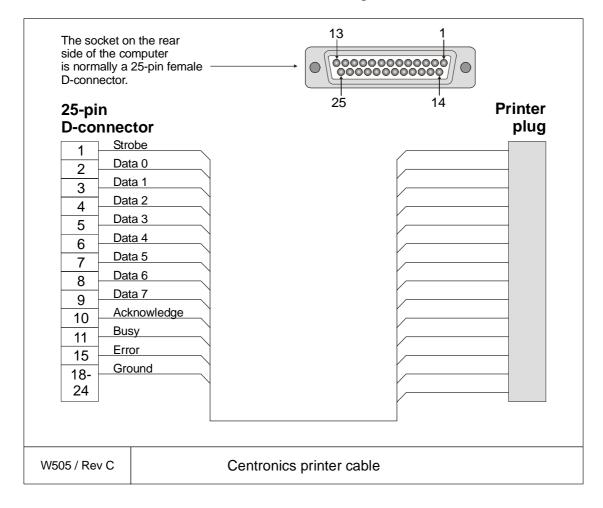
Several keyboard types are available for different languages and hardware platforms. Both the keyboard and the attached cable are commercial items.



Mouse or pointing device cable

This is a standard mouse cable. It is physically connected to the mouse. It is terminated in a plug suited to fit the computer.

On Unix work stations, the mouse is normally connected to the keyboard.


Several mouse and pointing device types are available with two or three buttons, and with or without a scroll wheel. Both the mouse and the attached cable are commercial items.

Note

Centronics printer cable

This is a standard Centronics printer cable.

EM 300 Synchronization

This cable provides the control signals between the EM 300 and the Synchronization System.

Set by the plugs

SSU			EM 300
Sensor bus	Triç)ger	Trig, DB-9 female
40 +12 V 25 Output ch 21 - 12 V 26 Output ch	1 kohm]	CTS 8
Sensor bus	Trigger	monitor	Test, DB-9 female
5 6 Input ch 7			Trig out 1 Trig ref 2
Sensor bus	Ready for	next trigger	Trig, DB-9 female
7 Input ch 2	2 +		RTS 7
Sensor bus	G	ND	Trig, DB-9 female
2 8 GND Input ch 2	2 -]	GND 5
07 / Rev. A S	imrad Synchronizatio	n Unit - EM 300	System
	Conductors	6 x 2 x 0.25	mm ²
	Screen	Overall brai	ded
	Voltage	60V	

Max. diameter

3.3 Transducer cables

Introduction

The transducer cables between the transducer arrays and the Transceiver Unit are all supplied by Kongsberg Maritime with the EM 300 system.

The physical number of cables depends on the chosen system beamwidth as shown the following tables.

TX Cables	
System beamwidth	Number of cables = 3 x Number of transducer modules
1 degree	24 (Four Tx1 and four Tx2 modules, each with three cables)
2 degrees	12 (Two Tx1 and two Tx2 modules, each with three cables)

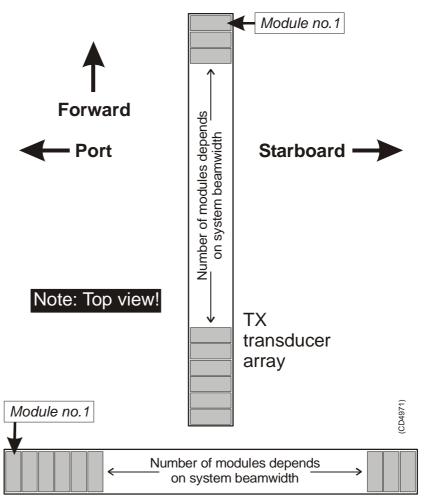
RX Cables	
System beamwidth	Number of transducer modules = Number of cables
1 degree	8
2 degrees	4
4 degrees	2

The following cable information is available both in the EM 300 installation and maintenance manuals. The cable markings are normally recorded in the installation manual first, and it is recommended to copy these records to the maintenance manual later.

Transmit array cable markings

Each transducer module and its cable is identified with a serial number as follows: Tx1 modules: Tx1D<nnn>, Tx1E<nnn>, Tx1F<nnn> Tx2 modules: Tx1A<nnn>, Tx1B<nnn>, Tx1C<nnn> Each transducer module is also identified by its physical location in the array (frame). This location number must be recorded during the installation of the transducer modules, and written down in the tables provided in this chapter. Note In order to ensure proper operation by the EM 300 system, it is of vital importance that the physical location of the transducer modules fits the designated module number in the transmit and receive circuitry. The Tx transducer array is physically positioned in the fore-and-aft direction under the hull. • Transducer module number **1** is always the most forward module. • Module number 2 is the second forward, and so on. Refer to figure 4 on page 37. During installation, you can select any Tx module you wish and place them in random order in the frame. However, you MUST write down the serial number on each module in the order they have been positioned in the frame, so that you later can identify the modules in positions 1, 2, 3 and so on. The connections to the Transceiver Unit are made with 25-pin "D" connectors. Note During the installation of the transmit array, you must fill in the table below. Note In a 2 degree system, you will only need the first 4 transducer modules (12 channels). Note *The cables from the Tx modules must exit on the starboard side.*

Physical postion (Module)	Module serial number	Socket identification
Pos.1 / TX2A		TX2A no.1
Pos.1 / TX2B		TX2B no.1
Pos.1 / TX2C		TX2C no.1
Pos.2 / TX1D		TX1D no.2
Pos.2 / TX1E		TX1E no.2
Pos.2 / TX1F		TX1F no.2
Pos.3 / TX2A		TX2A no.3
Pos.3 / TX2B		TX2B no.3
Pos.3 / TX2C		TX2C no.3
Pos.4 / TX1D		TX1D no.4
Pos.4 / TX1E		TX1E no.4
Pos.4 / TX1F		TX1F no.4
Modules 5, 6, 7 and 8	(channels 13 to 24) for	1 degree system on
Pos.5 / TX2A		TX2A no.5
Pos.5 / TX2B		TX2B no.5
Pos.5 / TX2C		TX2C no.5
Pos.6 / TX1D		TX1D no.6
Pos.6 / TX1E		TX1E no.6
Pos.6 / TX1F		TX1F no.6
Pos.7 / TX2A		TX2A no.7
Pos.7 / TX2B		TX2B no.7
Pos.7 / TX2C		TX2C no.7
Pos.8 / TX1D		TX1D no.8
Pos.8 / TX1E		TX1E no.8
Pos.8 / TX1F		TX1F no.8


→ For a visual description of the transducer cable layout, refer to drawing 821-211481 on page 409.

Receive array cable markings

Each transducer module and its cable is identified with a <u>serial</u> <u>number</u> as follows:

RX<nnn>

where <nnn> is a numerical value.

RX transducer array

Figure 4 Location of the first module in each array (example)

Each transducer module is also identified by its physical location in the array (frame). This location number must be recorded during the installation of the transducer modules, and written down in the tables provided in this chapter.

In order to ensure proper operation by the EM 300 system, it is of vital importance that the physical location of the transducer modules fits the designated module number in the transmit and receive circuitry.

The cables between the Preamplifier Unit and the Transceiver Unit are identified as follows:

R<n>

where <n> is a serial number.

The Rx transducer array is physically positioned in athwartship direction under the hull.

Note

	• Transducer module number 1 is always the first on the port side.
	• Module number 2 is the second on the port side, and so on.
	\rightarrow Refer to figure 4.
	During installation, you can select any Rx module you wish and place them in random order in the frame. However, you MUST write down the serial number on each module in the order they have been positioned in the frame, so that you later can identify the modules in positions 1, 2, 3 and so on.
	The connections to the Transceiver Unit are made with 25-pin "D" connectors.
Note	During the installation of the receive array, you <u>must f</u> ill in the table below.
Note	All cables must exit from the transducer modules poining forward towards the vessel's bow.
	In a 1 degree receive system, you will need all the modules listed in the table. With a 2-degree system, you need only the first 4, while the 4-degree system only requires the first 2 modules.

Location of Rx modules			
Physical postion (Module)	Module serial number	Socket identification	
1 (port)		Rx No.1	
2		Rx No.2	
3		Rx No.3	
4		Rx No.4	
5		Rx No.5	
6		Rx No.6	
7		Rx No.7	
8		Rx No.8	

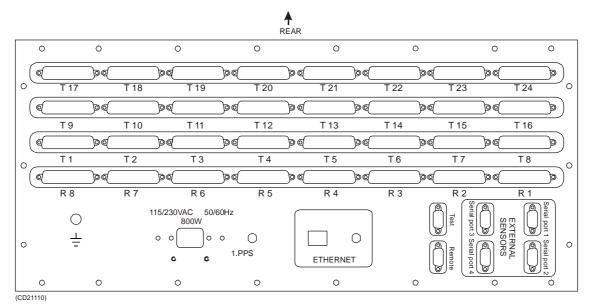


Figure 5 EM 300 Transceiver Unit's bottom panel with all the sockets for the interconnection and transducer cables. This drawing is valid for Transceiver Units with registration number: 125-210131.

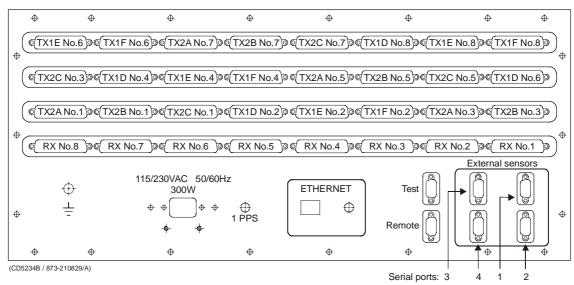


Figure 6 EM 300 Transceiver Unit's bottom panel with all the sockets for the interconnection and transducer cables. This drawing is valid for Transceiver Units with registration numbers: 125-211293 and 125-218182.

Blank page

4 TRANSCEIVER UNIT 125-210131

4.1 Description and main functions

Overview

The EM 300 Transceiver Unit performs the reception, data acquisition, received signal processing and transmission for the multibeam echo sounder system. The cabinet holds three wired racks containing the system circuit boards.

- The top **Processing Rack** holds the complete Processing Unit with its own power supply. This unit provides data acquisition, signal processing and function control.
- The middle **Receiver Rack** holds the receiver boards, a controller, two power supplies and a large capacitor bank.
- The bottom **Transmitter Rack** holds the transmitter circuitry and a dedicated controller.

Three different versions of the Transciever Unit have been delivered. The registration number of the Transceiver Unit will determine which version you have:

125-210131, more information on page 41.

125-211293, more information on page 101.

125-218182, more information on page 161.

This number is to be found on the Transceiver Unit chassis.

All versions are described in this manual. Please check your Transceiver Unit to find out which version you have.

4.2 Transceiver Unit 125-210131

This chapter provides the following information:

- \rightarrow Description and main functions, page 41.
- \rightarrow Transceiver Unit outline, page 43.
- \rightarrow Transceiver Unit racks, page 46.
- \rightarrow Theory of operation, page 50.
- \rightarrow Processing rack, details, page 55
- \rightarrow Receiver rack, details, page 72.
- \rightarrow Transmitter rack, details, page 92
- \rightarrow Circuit board descriptions, page 54.

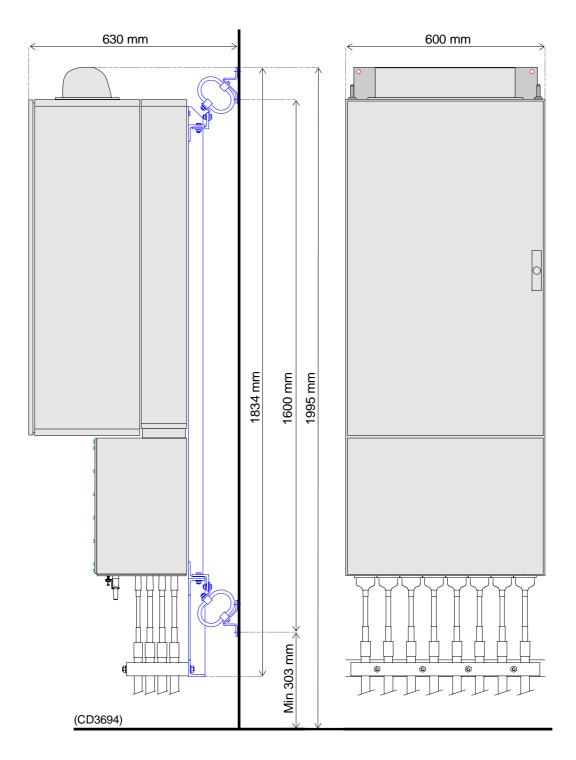


Figure 7 Standard EM 300 Transceiver Unit - Outline dimensions

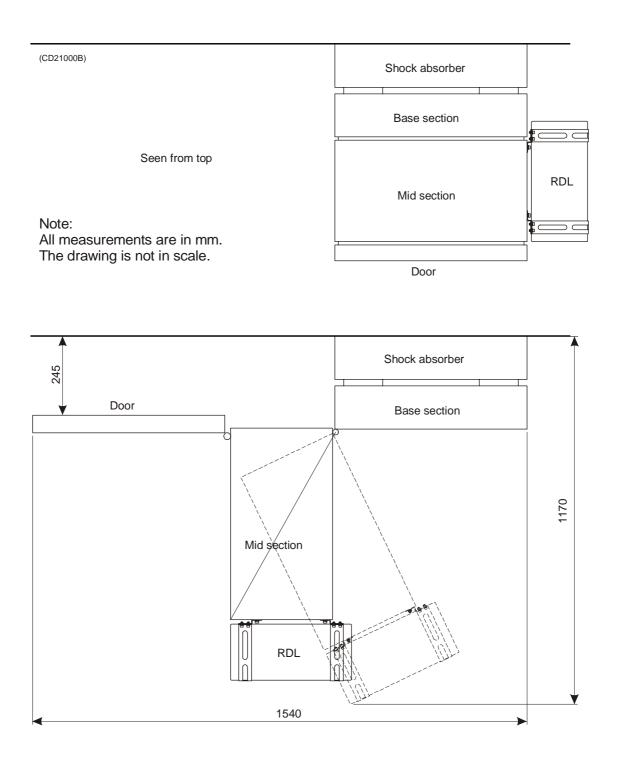


Figure 8 Transceiver Unit with Raw Data Logger, seen from above.

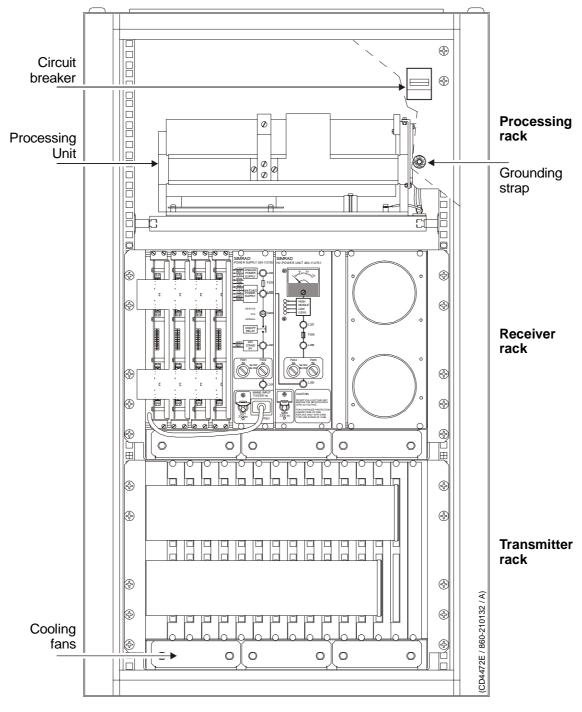



Figure 9 EM 300 Transceiver Unit wired racks

The Processing Rack

The Processing Rack is located at the top of the Transceiver Unit. It holds a chassis with several circuit boards, a fan and a power supply. A ground strap and a circuit breaker for the power supply is also available, but these are mounted on the main rack, and not on the shelf.

The Processing Rack holds the following circuit boards and modules:

- 4-Ports Serial Line board
- Beamformer & Signal Processor (BSP1 and BSP2)
- Ethernet Adapter board
- ROM board
- Control Processing Unit board
- Power supply
- Fan
- Motherboard

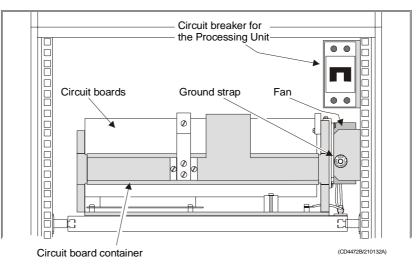


Figure 10 The Processing Rack - front view

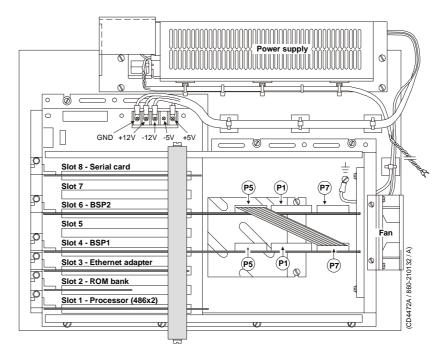
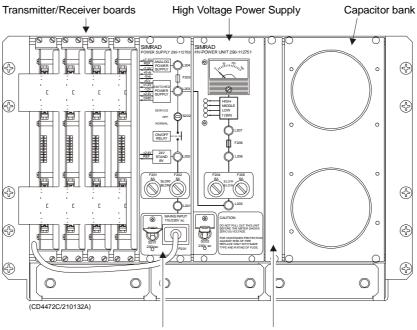



Figure 11 Processing Rack circuit board locations with power supply

The Receiver Rack

The Receiver Rack is located at the middle of the Transceiver Unit. It holds several circuit boards, power supplies and a capacitor bank. All the units are accessed from the front of the rack.

Low Voltage Power Supply Signal Processor Board RX (SPBRX)

Figure 12 The Receiver Rack

The Receiver Rack holds the following circuit boards and modules (from left):

- TRB 32/Receiver board (max 4)
- Low Voltage Power Supply
- High Voltage Power Supply
- Signal Processor Board RX (SPRX)
- Capacitor bank
- \rightarrow A more detailed description is found on page 73.

The Transmitter Rack

The Transmitter Rack is located at the bottom of the the Transceiver Unit. It holds one processor board and a number of transmitters.

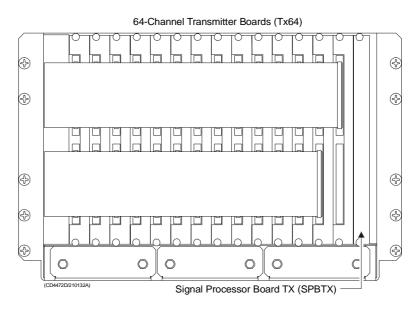


Figure 13 The Transmitter Rack

The Transmitter Rack holds the following circuit boards and modules (from left):

- 64-Channel Transmitter Board (TX64)
- Signal Processor Board TX (SPTX)
- → A more detailed description is found on page 91

4.3 Theory of operation

Overview

This chapter presents a functional description of the Transceiver Unit.

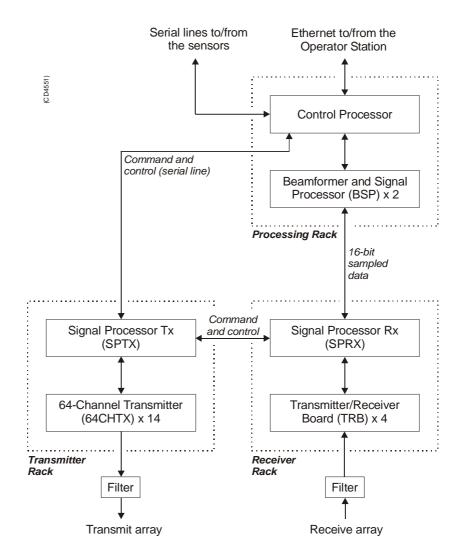


Figure 14 Transceiver Unit, simplified block diagram

Simplified block diagram

The simplified block diagram for the Transceiver Unit presents the following main functions:

- Transmission
- Reception
- Processing

\rightarrow Refer to figure 14.

The various parameter settings made on the Operator Station are sent to the Control Processor in the Processing Rack. The information (roll, pitch, pulse length etc.) is interpreted, and passed on to the Signal Processor TX (SPTX), which is the "master" processor in the TX/RX system.

After the transmission, the Signal Processor RX (SPRX) is instructed to receive the samples for all the receiver staves and pass them on to the two Beamformer and Signal Processors (SBP's) in the Processing Rack.

Control functions

The control functions in the Transceiver Unit are mainly handled by the three processor boards, but additional peripheral boards are also used. The majority of the control boards are contained in the Processing Unit.

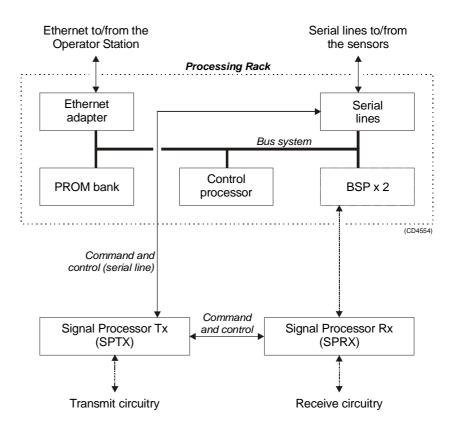


Figure 15 The control functions

The Control Processor in the Processing Unit is not equipped with interface capabilities, and thus requires external boards to handle ethernet and serial lines interface. It also relies on an external memory board for the software contained in the ROM device. All the peripheral boards used here are commercial. Note

Newer Control Processor Units (CPU) handles ethernet interface and have a DiskOnModule installed (containing software). This kind of CPU also relies on an external board to handle serial line interface.

One serial line is used to interface the command and control signals to and from the TX/RX controllers. The Signal Processor TX is the "master".

External synchronisation

The serial line RTS and CTS signals are used for external synchronisation. In addition a trig out signal is issued by the TRU.

Levels: RTS, CTS: H=high= +3 to +15 V L=low= -3 to -15 V Trig out: TTL Level

Outputs from TRU:

Trig out=1	TX is off(<u>H</u> igh TTL level)
Trig out=0	TX is active(<u>L</u> ow TTL level)

RTS=HTRU is ready for a new pingRTS=LTRU is not ready

RTS is pin 7 on the CPU card D connector. (Pin 6 on EM120 and EM300 "remote" plug).

Inputs to TRU:

CTS=H Ping command CTS=L Wait

CTS is pin 8 on the CPU card D connector. (Pin 7 on the EM120 and EM300 "remote" plug). The CTS pulse length must be minimum 30 milliseconds.

Gnd is pin 5 on the CPU card D connector. (Pin 8 on EM120 and EM300 "remote" plug).

Typical sequence:	
CTS	

CIS		
	TX	
	Command	
RTS		·····
	(TRU ready) (TRU busy)	(TRU busy)
Trig out		
	TX	
	Pulse	

When the TRU is ready for a new ping, RTS is set to H. When the external device is ready for a new ping, CTS shall be changed to H. The TRU will then start a ping, change RTS to L (busy), and the Trig out will be low during the transmit pulse. After the Trig out is received, the external device should turn CTS to L. (Or at least keep it high for 35 milliseconds).

When the received period is finished and the TRU is ready for a new ping, the RTS will be changed to H, and the TRU will wait for new trigger (a high level on CTS).

If CTS is H all the time, or if external sync in the installation menu is switched off, the TRU will ping at its maximum rate.

4.4 Circuit board descriptions

Overview

This chapter describes all the circuit boards and modules in the EM 300 Transceiver Unit. A functional description with a block diagram is provided, as well as the facilities provided for maintenance.

Remember that all versions of the Transceiver Unit is in this manual. Different boards and power supplies are therefore described for the EM 300 system. Check the reg.no. on your Transceiver Unit to find out which version you have.

4.5 Processing rack details

Location

The Processing Rack is located at the top of the the Transceiver Unit. It holds a chassis with several circuit boards, fans and a power supply. A ground strap and a circuit breaker for the power supply is also available, but these are mounted on the main rack, and not on the shelf.

Circuit boards and modules

4-ports Serial Line Board

This is a commercial circuit board. It provides the Transceiver Unit with four serial lines.

 \rightarrow The interface board C114P is explained on page 56.

Beamformer & Signal Processor (BSP)

These are the main processing boards in the Transceiver Unit.

 \rightarrow The circuit board is explained on page 58.

Control Processor Unit board (CPU)

This processor board acts as a function controller.

 \rightarrow The circuit board, SSC-5x86H, is explained on page 64.

Ethernet Adapter

This is a commercial circuit board. It provides the Transceiver Unit with the ethernet communication to the Operator Station.

 \rightarrow The circuit board is explained on page 61.

ROM board

This is a commercial ROM (Read Only Memory) board.

 \rightarrow The circuit board is explained on page 63.

Power supply

The Processing Rack contains a commercial switch-mode power supply located behind the circuit board.

 \rightarrow The power supply is explained on page 69.

Motherboard

This is a commercial circuit board.

 \rightarrow The circuit board is explained on page 72

Fan

The fan is located on the right side of the Processing Rack, when seen from the front.

4-Ports Serial Line Board (C114P)

Purpose and description

This is a commercial circuit board designed and produced by Moxa Technologies. It is identified as C114P, and is located in the Processing Rack.

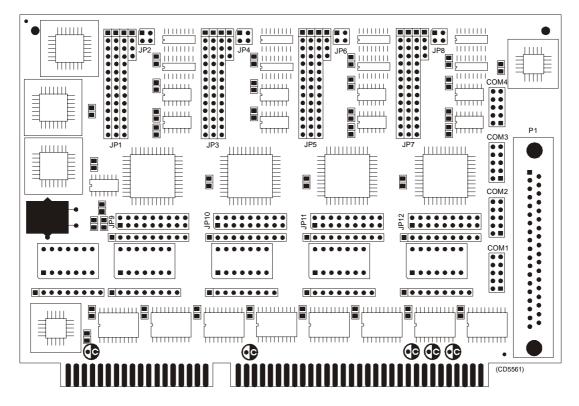


Figure 16 The C114P layout

How it works

Each of the 4 ports can be configured to RS-232, RS-422, or RS-485 interface individually, but only RS-232 will work on the EM 300 system.

Facilities

<u>LEDs</u>

None.

Jumpers

The C114 is set up with IRQ 11 on the jumpers JP9, JP10, JP11 and JP12.

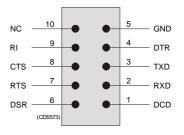
<u>Links</u>

Note

The following settings are only valid for new boards. For boards older than spring 2001 the settings will be inverted. The settings that are OFF on these drawings will be ON and vice versa.

The settings of the C114P DIP switches for use in the EM 300 are listed in the table below:

Switch	1	2	3	4	5	6	7
SW 5	ON	ON	OFF	OFF	OFF	ON	ON
SW 1	ON	ON	ON	ON	OFF	OFF	ON
SW 2	OFF	ON	ON	ON	OFF	OFF	ON
SW 3	ON	OFF	ON	ON	OFF	OFF	ON
SW 4	OFF	OFF	ON	ON	OFF	OFF	ON


Connections

The C114P contains one DB-37 female connector on the rear side of the circuit board. It comes with a cable; one terminal is a 37-pin male D-type and the other terminal is a four 9-pin male D-type connectors. This is not used.

\rightarrow Refer to figure 17 for pin assignments.

In addition, four 10-pin pin-head connectors corresponds to the DB-37 connector on the board of C114P. These four connectors are called COM1, COM2, COM3 and COM4, and are connected directly to the Transceiver Unit bottom plate.

Figure 17 10-pin header connector pin assignment

Beamformer & Signal Processor (BSP)

Purpose and description

The Beamforming & Signal Processing (BSP) board is a multi digital signal processor (DSP) board. It is designed to perform the beamforming and signal processing in sonars and multibeam echo sounders. It is controlled from a host processor.

The processing power in the Beamforming & Signal Processing (BSP) board is based on eight Texas TMS320C50 fixed point digital signal processors working in parallel while beamforming the data. Next, there are four Texas TMS320C44 floating point digital signal processors interconnected to use both parallel and sequential processing of the beamformed data from the fixed point processors.

The Beamforming & Signal Processing (BSP) board is a single slot full length standard ISA format circuit board made to fit into a personal computer.

How it works

The Beamforming & Signal Processing (BSP) board contains four main sections:

- Sonar Input Data
- Beamforming
- Signal Processing
- Host Interface

The **Sonar Input Data** interfaces an 18-bit wide and 1k deep Input FIFO (First-In-First-Out) register. This input FIFO holds the data received from the transducer array through the receiver processing circuitry. A dedicated digital signal processor reads the input FIFO.

There are two identical **Beamforming** digital signal processing branches. Each consists of four digital signal processors and a 16-bit wide and 8k deep dual port memory (DPRAM). The two branches are exchanging data by means of this DPRAM.

The **Signal Processing** section comprises three digital signal processors dedicated to do further processing of the beamformed data.

The **Host Interface** function is maintained by the master processor on the Beamforming & Signal Processing (BSP) board. It exchanges data with the host processor via a 16-bit wide and 8k deep dual port memory (DPRAM) on the ISA bus.

Facilities

<u>LEDs</u>

D1 (LED): C44 D

Test points

There is one test point for each C50 digital signal processor (eight total). These testpoints are all connected to the XF/ signal which is active while that particular C50 access the shared DPRAM.

There is also one test point for each C44 digital signal processor (four total). These test points are connected to the IIOF2/ signal, which is a general purpose I/O port bit that can be controlled by the software.

The C44-D testpoint is also connected to a light emitting diode (D1) for visual observation. The LED will be activated during each ping.

TP1	C50 E0
TP2	C50 E1
TP3	C50 E2
TP4	C50 E3
TP5	C50 F0
TP6	C50 F1
TP7	C50 F2
TP8	C50 F3
TP11	C44 A
TP12	C44 B
TP13	C44 C
TP14 (& D1)	C44 D

The testpoints will be active when the corresponding processor is working.

<u>Links</u>

A number of links are implemented on the board to allow for several different applications. Links LK1, LK2 and LK3 are used to identify the board as one out of maximum eight boards in one system.

LK3	LK2	LK1	BSP ID
0	0	0	BSP 0
0	0	1	BSP 1
0	1	0	BSP 2
0	1	1	BSP 3
1	0	0	BSP 4
1	0	1	BSP 5
1	1	0	BSP 6
1	1	1	BSP 7

Link applications

The following links are ON (closed) in this application:

- BSP0 is the master processor (no links).
- BSP1 is the slave processor (link LK1).

Switches

There are no switches on the board.

Connections

The Beamforming & Signal Processing (BSP) holds the following plugs and sockets:

P1	Sonar input data
P2	ISA bus component
P3	Emulator
P4	Direct memory access
P5	External communication port
P6	Test access port
P7	External communication port

The P1, sonar input data, is connected to SPRX via a flat cable plug connected to the Reciever Backplane, plug P11.

Ethernet Adapter

Purpose and description

This is a 16-bit ISA adapter designed and produced by 3Com, identified as 3C509B-COMBO. The purpose of the adapter is to connect the transceiver unit to the operator unit. The circuit board is located in the Processing Rack.

How it works

The cable types and connector specifications in the Ethernet Adapter are:

- 10BASE5 thick Ethernet coaxial, 10BASE2, fibre etc. with an AUI connector.
- 10BASE2 thin Ethernet coaxial with a BNC connector.
- 10BASE-T, twisted-pair cable with a RJ-45 connector.
- \rightarrow The 3C509B-COMBO edge connectors is shown in figure 18.

The 3C509B-COMBO has a LED for the link beat. This LED confirms that there is an active connection between the adapter and the hub. The thin ethernet segment is terminated at both ends with a 50 Ω terminator.

The maximum bus speed supported by the Ethernet Adapter is 10 MHz.



Figure 18 The 3C509B-COMBO backplate with its connectors

Facilities

<u>LEDs</u>

Confirms that there is an active connection between the adapter and the hub.

- If the LED is on, the link beat is working. (The connection is correct).
- If the LED is off, the link beat has not been established or there is a problem with the connection between the adapter and the hub.
- If the LED is blinking, the cable polarity is reversed.
- \rightarrow See figure 18

Connections

The internal wiring gives access to the BNC and RJ45 connections at the bottom plate of the Transceiver Unit.

Setup of the board

If the type of ethernet cable is known at delivery time, the board is set up accordingly. If not, the board is set up for 10BASE-T (RJ-45).

It is difficult to reconfigure the board on site. (A PC with ISA-bus and special software is needed).

ROM board

Purpose and description

The ROM (Read Only Memory) board is an ISA bus card that adds an EPROM socket to a PC motherboard. This is a commercial circuit board designed and produced by Blunk Microsystems. The ROM board is located in the processing rack.

It provides a means of auto-starting embedded applications. If a properly formatted EPROM is installed, the BIOS will recognize the EPROM during its ROM scan and pass control to it after completing the power-up tests. The ROM board uses one 27010, 27020 or 27040, booting applications as large as 128K, 256K or 512K, respectively.

Facilities

<u>LEDs</u>

None

Test points

None

<u>Links</u>

Jumper	Base Address
1-8	CE000
2-7	CE800
3-6	CF000
4-5	CF800

When used in EM 300, the default settings for the ROM board are jumpers 2-7, and base address CE800.

Control Processor Unit board

Purpose and description

This circuit board is an ISA Half-sized Single Board Computer delivered by ICP. It is equipped with a 486 CPU and advanced high performance multi-mode I/O. There are two variants of the circuit board that might be placed in the system. These are identified as:

• SSC-486H

or

• SSC-5x86H

Both of them are explained in this chapter. The Control Processor Board is located in the Processing rack.

Specifications

An advanced high performance super AT I/O chip is used in the SSC. Both on-chip UARTs are compatible with the NS16C550. The parallel port and IDE interface are compatible with IBM PC/AT and XT architecture's. The super AT I/O chip incorporates sophisticated power control circuitry (PCC). The PCC supports multiple low power down modes.

In addition, both the SSC-486H and the SSC-5x86H, provides two 72-pin SIMM sockets for their on-board DRAM. The 72-pin accepts 1MB, 2MB, 4MB, 16MB and 32MB SIMM. Thus, the total on-board memory can be configured from 1MB to 64MB.

The Half-sized Single Board Computers SSC-486H and SSC-5x86H provides the following specifications:

	SSC-486H	SSC-5x86H
CPU	486SX/DX/DX2 or DX4	486SX/DX/DX2/DX4 or Cyrix/AMD 5x86
Bus	PC/104 bus	ISA bus and PC/104 bus
DMA channels	7	7
Interrupt levels	15	15
Chipset	UM8498F and UM8496	M1489 and M1487
Real-time clock/calendar	DS-12887 chip and quartz oscillator, 128B CMOS memory, pow- ered by lithium battery for over 10 years of data retension.	DS-12887 chip and quartz oscillator, 128B CMOS memory, pow- ered by lithium battery for over 10 years of data retension.
RAM memory	1MB to 64MB	1MB to 64MB, EDO and standard DRAM supported.

	SSC-486H	SSC-5x86H
IDE hard disk drive interface	Up to two IDE hard drives.	Up to two PCI Enhance IDE hard drives.
Floppy disk drive interface	Two 2.88MB, 1.44MB, 1.2MB, 720KB or 360KB floppy disk drives.	Two 2.88MB, 1.44MB, 1.2MB, 720KB or 360KB floppy disk drives.
High speed serial ports	Two NS16C550 com- patible UARTs	Two NS16C550 com- patible UARTs
Bi-directional Parallel Port	Yes	Yes
Watch-dog timer	Can be set by 1, 2, 10, 20, 110 or 220 seconds period. Reset or NMI was generated when CPU did not period- ically trigger the timer. Your program use hex 043 and 443 to control the watch-dog and generate a system reset.	Can be set by 1, 2, 10, 20, 110 or 220 seconds period. Reset or NMI was generated when CPU did not period- ically trigger the timer. Your program use hex 043 and 443 to control the watch-dog and generate a system reset.
External power connector	Yes	Yes
Keyboard connector	Yes	Yes
Mouse	PS/2 Mouse Port on- board	PS/2 Mouse Port on- board
Power Consumption	+5V @ 2.5A (486DX2-66, 4MB RAM) +/- 12V @ 20mA (for RS-232 only)	+5V @ 1.75A (5x86-133, 4MB RAM)
Operating temperature	0° ~ 60°C (CPU needs cooler)	0° ~ 60°C (CPU needs cooler)

[→] The set-up procedures for SSC-486H and SSC-5x86H are described on page 257

Facilities

Jumpers

All the SSC-5x86H- and SSC-486H circuit board's jumpers are preset at the factory. The default settings are listed in the tables.

 \rightarrow Refer to figure 19 for different jumper settings.

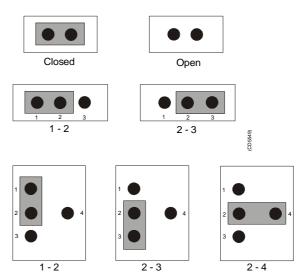


Figure 19 Different applicable jumper settings

|--|

	Jumpers	Settings	Description
SSC-486H CPU	JP1	2 - 3	-
	JP2	1 - 2 3 - 4	-
	JP3	Open	-
	JP4	Open	-
	JP5	1 - 2	-
	JP6	Open	-
	JP7	Open	-
CPU Clock Generator Speed (33 MHz)	JP8	1 - 2 Closed 3 - 4 Closed 5 - 6 Open 7 - 8 Open	-
CPU Voltage (+3.3 V)	JP12	2 - 3	-
	JP24	Open	-
Upgrade the External Cache	JP13	2 - 3	-
(128KB, 32K x 8)	JP14	1- 2 3 - 4	-
Watch-Dog Timer, Active Type	JP18	1 - 2	Open when WDT time-out
WDT Time-out period (10 sec.)	JP17	1 - 2 Open 3 - 4 Closed 5 - 6 Open 7 - 8 Open	-

	Jumpers	Settings	Description
Parallel Port Interface, Parallel Port Interrupt Setting (IRQ7)	JP22	1 - 2	-
Parallel Port Data Request Setting (DRQ3)	JP20	2 - 3	-
Parallel Data Acknowledge (DACK3)	JP19	2 - 3	-
Serial Port Interface, COM1 Serial Port Interrupt Setting (IRQ4)	JP21	1 - 2	-
COM2 Serial Port Interrupt Setting (IRQ3)	JP23	1 - 2	-
IDE Host Adapter Interface	JP11	Open	IDE IOCHDRY Non-Connected
FDC47C665 Multi-I/O Chipset	JP16	Open	Enable FDC37C665
PS/2 Mouse IRQ Selection (IRQ12)	JP15	Closed	-

The SSC-5x86H circuit board:

	Jumpers	Settings	Description
SSC-5x86H CPU	JP1	2 - 3	-
	JP2	2 - 3	-
	JP3	3 - 4	-
	JP4	3 - 4	-
	JP5	3 - 4	-
	JP6	5 - 6	-
	JP7	2 - 3	-
	JP8	2 - 3	-
	JP9	Closed	-
	JP10	Open	-
CPU Clock (33MHz)	JP11	1 - 2 Closed 3 - 4 Closed	-
	JP12	Open	-
	JP14	1 - 2	-
CPU Voltage (+3.3V)	JP13	2 - 3	-
Watch-Dog Timer, Active Type	JP15	1 - 2	Open when WDT time-out

	Jumpers	Settings	Description
WDT Time-out period (10 sec.)	JP16	1 - 2 Open 3 - 4 Closed 5 - 6 Open 7 - 8 Open	-
DiskOnChip Memory Address	JP17	5 - 6	Address E000
PS/2 Mouse	JP18	Closed	Enable PS/2 Mouse, IRQ12

Connections

COM1 is used for external sync (RTS, CTS). COM1, pin RX/TX, is also connected to the test connector at the Transceiver Unit bottom plate, for debug purposes and factory production testing.

 \rightarrow Refer to description page 52.

1PPS signal is connected from the parallel port (signal on pin 10, GND (ground) on pin 23) to the bottom plate in the Transceiver Unit.

Processing Unit Power Supply

Note

The power supply distributes voltages that can result in personal injuries. Please take necessary precautions.

Purpose and description

The purpose of the power supply (NFS200-7602CFM) is to feed 5 Vdc and 12 Vdc to the Processing Rack. It is located on the rear side of the Processing Rack, hidden behind a cover plate.

How it works

This is a commercial switch-mode power supply that feeds 5 Vdc and 12 Vdc to the Processing Rack. It is also connected to the TX backplane with a 12 Vdc and a ground signal.

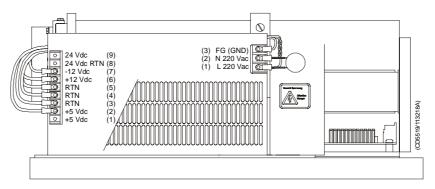


Figure 20 The power supply (NFS200-7602CFM)

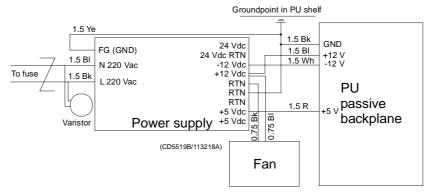


Figure 21 Power supply, block diagram

Facilities

Connections

• From the 9-pin plug (Pin 1, 3, 8 and 9 not in use):

Pin	Signal	Connection
2	+5 Vdc	+5 Vdc in PU
4	GND	GND in PU
4	GND	Fans in PU
5	GND	TX backplane-P1 pin 3
5	GND	TX backplane-P1 pin 4
6	+12 Vdc	+12 Vdc in PU
6	+12 Vdc	Fans in PU
6	+12 Vdc	TX backplane-P1 pin 1
6	+12 Vdc	TX backplane-P1 pin 2
7	-12 Vdc	-12 Vdc in PU

• From the 3-pin plug

Pin	Signal	Connection
1	220 Vac	Circuit breaker
2	220 Vac	Circuit breaker
3	GND	Groundpoint in PU shelf

Motherboard

How it works

This is a passive backplane with standard ISA-bus.

Facilities

<u>LEDs</u>

The board has four LEDs:

- + 5V
- - 5V
- + 12V
- - 12V

- 5V is not used and is not lit. The three others should be lit at all times.

Test points

None

<u>Links</u>

None

Connections

+ 5V, + 12V and - 12V.

4.6 Receiver rack details

Location

The Receiver Rack is located at the middle of the the Transceiver Unit. It holds several circuit boards, power supplies and a capacitor bank.

 \rightarrow Refer to the illustration on page 48.

Circuit boards and modules

Transmitter/Receiver board

These four boards hold the amplifiers for all the individual receive channels. (The boards may also provide power amplification of the transmitted signal, but as this function is not used in the EM 300, these components have been omitted).

 \rightarrow The circuit board is explained on page 73.

Low Voltage Power Supply

This is a commercial linear power supply mounted on a chassis for easy replacement. It also contains linear supplies for the TRB's.

 \rightarrow The Low Voltage Power Supply is explained on page 76.

High Voltage Power Supply

This is a switching power supply. It provides the high output voltage for the transmitters, and uses the Capacitor bank to store the energy between the pings.

→ The High Voltage Power Supply HVPU is explained on page 79.

Signal Processor Board RX (SPRX)

The processor board is used as a function controller. This is a common circuit board whose name is SPB31, and it is both used in the Transmitter Rack and the Receiver Rack.

 \rightarrow The Signal Processor Board is explained on page 80.

Backplane (RXBP)

The Receiver Rack uses a passive backplane. All connections to the circuit boards (except transmission signals) are made on this backplane.

 \rightarrow The RX Backplane is explained on page 86

Capacitor bank

This unit stores transmission energy temporarily.

Transmitter/Receiver Board (TRB)

Purpose and description

The purpose of the Transmitter/Receiver Board (TRB) is to provide amplification of the signals received from the Preamplifier Unit. The board has 32 individual channels. The board is designed to provide transmission as well, but these components are not mounted on the circuit boards used in the EM 300 Transceiver Unit

The TRB is fastened to a combined strengthening plate and heat sink which covers the entire component side of the board and also forms a "front panel" to the board. The board is located in tracks within the Transceiver Unit to ensure correct location, and is held in position by four screws.

The TRB has two 34-pin connectors on its front edge which carry the signals from the Preamplifier Unit.

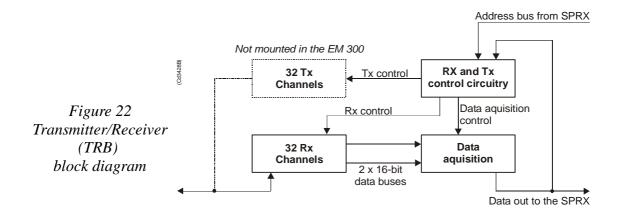
A one degree system needs four Transmitter/Receiver (TRB) boards. This means that all 128 channels are used.

A two degree system needs two Transmitter/Receiver (TRB) boards, while a four degree system only have one.

How it works

Transmission

The TRB contains a control interface that controls the 32 transmitters on the board.


The transmitters can be controlled individually to enable beamforming of the transmitted pulse.

Reception

The TRB receives signals from 32 transducer elements. The signals are individually amplified, time-varied-gain regulated, demodulated, and analogue-to-digital converted. The converted signals are then output from the board and sent to the BSP's for further processing.

Dimensions (Width x Heigh x Depth)	220 x 233.35 x 0.32 mm
Analogue input/output	32 channels, 60W, + T/R switch
Connectors	Two 96-pin euro on back edge of board Two 34-pin flat cables on front edge
Analogue to digital	12-bits resolution I/Q simultaneously converted to 32-bit latched bus
Power requirements	+ 5 Vdc, 8 Vdc, + 24 Vdc

Technical details

Facilities

<u>Test points</u>

The test points listed below are available to assist the maintenance engineer. They are located on the front edge of the board between the two connectors, in front of the corresponding LED.

AVCC analogue voltage + 5 V
AVDD analogue voltage NA
VCC digital voltage + 5 V
AVEE analogue voltage
HV1 high voltage transmitter + 8 - + 80 Vdc
HV2 high voltage transmitter NA
HV3 high voltage transmitter NA
HV4 high voltage transmitter NA
TX transmitter indicator NA

The testpoints marked with NA are not used on EM 300.

<u>Links</u>

The TRB holds no links that can be set by the maintenance engineer.

Switches

The TRB holds no switches that can be adjusted by the maintenance engineer.

<u>LEDs</u>

The TRB holds ten red LEDs on its front edge, mounted in a vertical line between the connectors. When these LEDs are lit, they indicate the presence of the corresponding voltage levels.

Connectors

The TRB carries four connectors, two located at each end of the board. P1 is a 96-pin, male right-angled euro-connector, located on the rear edge of the board, carrying power. P2 is a 96-pin, male, right-angled euro-connector, also located on the rear edge of the board, carrying power and digital control signals. P3 and P4 are 34-pin, male, right-angled connectors with ejector/latch, located on the front edge of the board. Each connector carries 16 input/outputs to the transducer/preamplifier.

Low Voltage Power Unit (LVPU)

Purpose and description

The purpose of the Low Voltage Power Unit (LVPU) is to supply power to all the modules in the Transceiver Unit, except the high voltage power for the transmission, power to PU and ± 12 Vdc.

The Low Voltage Power Unit is located between the Transmitter/Receiver Boards and the High Voltage Power Supply in the Receiver Rack. The power supply is a plug-in module. It has two front mounted fuses, one service switch, and one switch to select 115 or 230 Vac mains input.

Switched power supply MAP55-4001 Mains transformer Ulveco N14034-TD Used in analogue power supply

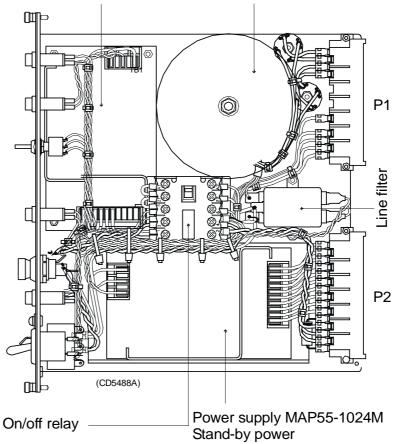
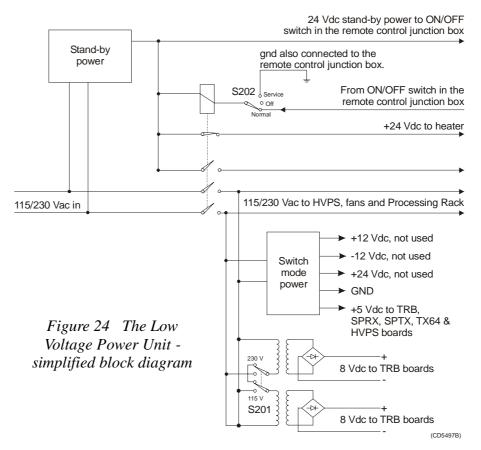


Figure 23 The Low Voltage Power Supply

How it works


The power unit contains two separate power supplies. The output of the stand-by power supply is 24 Vdc.

The power unit has a service switch. When this is set to normal, the power supply is controlled by the on/off relay. This relay is remote controlled from a switch in the operator room. When you disengage the relay, you can control the power supply manually from the Transceiver Rack using the service switch. It is then possible to activate parts of the system (service mode).

The transformers and rectifiers function is to provide 8 Vdc output for the receivers either we have 115 Vac or 230 Vac input.

The LVPU also supplies + 5 V to several boards. See figure below.

→ *Refer to the block diagram in figure 24 and the circuit diagram on page 386.*

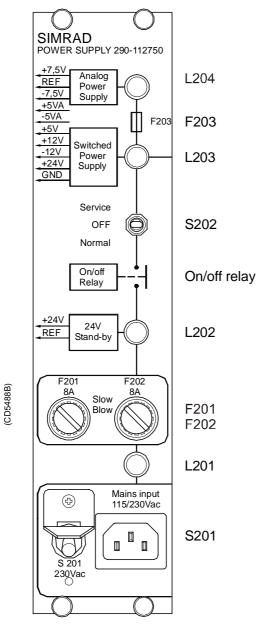


Figure 25 The front panel

Facilities

<u>LEDs</u>

- L201: Indicator for mains input
- L202: Indicator for 24 Vdc stand by mode
- L203: Lit to indicate AC supply to switched and analogue
- L204: Lit to indicate AC supply to analogue power.

Test points

None

<u>Links</u>

None

Switches

- S201: Switch for mains input 115/230 Vac
- S202: Service/Off/Normal switch

Connections

- P1
- P2

<u>Fuses</u>

- F201: Primary fuse
- F202: Primary fuse
- F203: Thermostat fuse inside the torodial transformer

High Voltage Power Unit (HVPU)

Purpose and description

The purpose of the High Voltage Power Unit (HVPU) is to provide the power for the output amplifiers.

The input is to the system is 85 to 265 Vac. The output is 80 Vdc. The output voltage can be reduced to -10 dB (25 Vdc) or -20 dB (8 Vdc). The values can be adjusted.

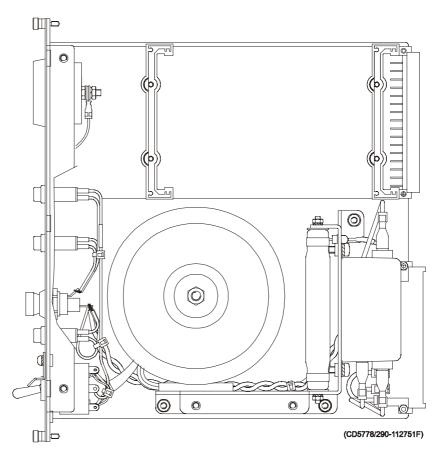


Figure 26 The High Voltage Power Supply

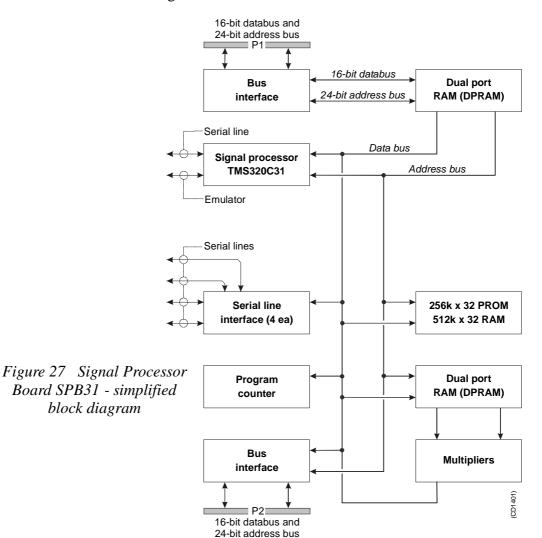
Signal Processor Board (SPB31)

Purpose and description

The Signal Processor Board (SPB31) is designed for high speed beamforming and sonar signal processing. The board design is based on the TMS 320C31 floating point DSP (Digital Signal Processor) from Texas Instruments.

The Signal Processor Board is designed as a "double Europe" standard sized printed circuit board. It is equipped with a number of front mounted LEDs, test points, potentiometers and coax connectors.

The board is used two places in the EM 300 Transceiver Unit; to control the transmission (SPTX) and the reception (SPRX).


The reg.no. for SPB31 Tx is 382-133472 and 382-134469 for SPB31 Rx.

How it works

The main components of the Signal Processor Board are:

- 1 TMS 320C31 Digital Signal Processor
 - Clock frequency 33.33 or 40 MHz
 - 32-bit data bus
 - 24-bit address bus
 - 40/32-bit floating point unit
 - 1 internal serial line
 - 2 pc 32-bit timers
 - 4 interrupt inputs
 - DMA controller
 - Programmable in C and assembly
 - Emulator and symbolic de-bugger available
- **2** 256k x 32 bit PROM.
- **3** 512 x 32 bit SRAM 25 ns
- 4 Complex multiplier.
- 5 4 serial lines RS422/RS232.
- 6 Programmable counter for TX clock, 64 CHTX.
- 7 Dual port interface to P1 bus (Multibus I type).
- 8 Bus interface to P2 bus.
- 9 Control bus for control outputs compatible with SPB29.

The Signal Processor Board works very similar to other microprocessor boards. The TMS 320C31 Digital Signal Processor operates with standard peripheral circuitry such as RAM, PROM (with software) and the interface controllers. Devices for disk drive control are omitted, but Dual Port RAM and a complex multiplier is implemented instead. Refer to the block diagram.

An emulator for the TMS 320C31 processor is developed. It consists of a controller board in a PC and an active pod which is connected to the target board by a 12 pin plug.

Facilities

Unmounted devices

Note that several sockets on the Signal Processor Board may be empty. On EM 300 the Mulitpliers with corresponding DPRAM are not mounted.

<u>Links</u>

A large number of links are implemented on the processor board to allow for several different applications. The links are used as follows:

LK 1	2BI422 to RXDB on U15
LK 2	RXDB2 input to RXDB on U15
LK 3	2AI422 to RXDA on U15
LK 4	RXDA2 input to RXDA on U15
LK 5	CLKIN to U64
LK 6	FSRO and DRO to set frame sync for sercom on U32
LK 7	RDRO to DRO when sercom in U32 is used on RS232
LK 8	Clock to U36
LK 9	RXDA input to RXDA on U63
LK 10	RXDB input to RXDB on U63
LK 11	BI422 input to RXDB on U63
LK 12	AI422 input to RXDA on U63
LK 13	CLQ to P2A25, U60 must not be mounted
LK 14	TXCLK to P2B24, U60 must not be mounted
LK 15	CLI to P2A24, U60 must not be mounted
LK 16	TSTSIG to P2C23, U60 must not be mounted
LK 17	TXEN~ to P2A22, U60 must no be mounted
LK 18	MEM3 to P2C3, LK30 must be OFF
LK 19A	XF0~ as output
LK 19B	XF0 as input
LK 20A	XF0 as output
LK 20B	XF0~ as input
LK 23A	XF1~ as output
LK 23B	XF1 as input
LK 24A	XF1 as output
LK 24B	XF1~ as input
LK 25A	TCLK0~ as output
LK 25B	TCLK0 as input
LK 26A	TCLK0 as output
LK 26B	TCLK0~ as input
LK 27A	TCLK1~ as output
LK 27B	TCLK1 as input
LK 28A	TCKL1 as output
LK 28B	TCLK1~ as input

LK 29	External reset, INIT1, when ON
LK 30	IACK~ to P2C3, LK18 must be OFF
LK 31	U40 to CLKIN on DSP U32

Note that this list is for reference only.

Link applications

When using the Signal Processor Board in the EM 300 Transceiver Unit, the following links must be **ON** (closed):

SPRX:

- LK 4
- LK 5
- LK 8
- LK 9
- LK10
- LK 31

SPTX:

- LK 4
- LK 5
- LK 8
- LK 9
- LK 10
- LK 19 (see below)
- LK 20 (see below)
- LK 23 (see below)
- LK 24 (see below)
- LK 31

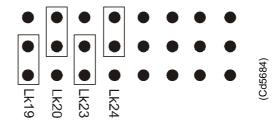
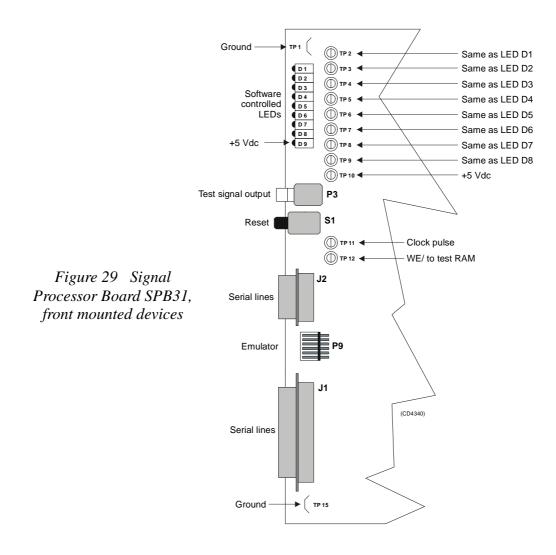


Figure 28 Signal Processor Board SPB31, default settings

<u>LED's</u>


LED's used for SPTX:

- **D1:** program initialized OK
- **D2:** ready for new command
- D3: transmit active
- D4: BIST active
- D5: not used
- **D6:** test purpose
- **D7:** test purpose
- **D8:** test purpose
- LED's used for SPRX:
- **D1:** program initialized OK
- D2: BIST active
- D3: aquisition of reciever data
- D4: aquisition of reciever data
- **D5:** simulator active
- D6: not used
- D7: not used
- D8: not used

Test points

TP 1: GND

- **TP 2:** General purpose test output no.1
- **TP 3:** General purpose test output no.2
- **TP 4:** General purpose test output no.3
- **TP 5:** General purpose test output no.4
- **TP 6:** General purpose test output no.5
- **TP 7:** General purpose test output no.6
- **TP 8:** General purpose test output no.7
- TP 9: General purpose test output no.8
- **TP 10:** +5 Vdc
- TP 11: Clock pulse, CP, monitor
- **TP 12:** WE~ for testing RAM loading
- **TP 13:** GND
- TP 14: GND
- **TP 15:** GND

Connections

The following connections are made to the Signal Processor Board:

P1	Multibus		
P2	Signal processor external bus		
P3	Test signal output		
J1	Serial lines		
J2	Serial lines		

The trig out puls is active during transmit, and generated by SPRX. This is a TTL level pulse and is active when low.

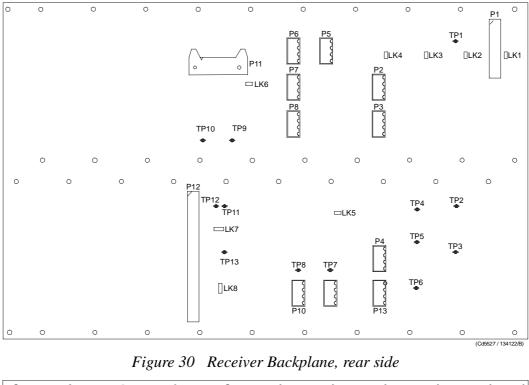
- \rightarrow The connections are explained in the figure on page 52.
- → The Receiver Backplane connections(PXB-P3) are explained on page 87.

Receiver Backplane (RXBP)

Purpose and description

The purpose of the Receiver Backplane is to enable communication between the circuit boards plugged into it, and between these circuit boards and the external circuitry in the cabinet. The RXBP is located behind the middle wired rack in the Transceiver Unit, and holds the following circuit boards:

- Transmitter/Receiver Board 1
- Transmitter/Receiver Board 2
- Transmitter/Receiver Board 3
- Transmitter/Receiver Board 4
- Low Voltage Power Supply
- High Voltage Power Supply
- Signal Processor Board RX
- Capacitor Bank


How it works

There are no active components on this backplane.

Facilities

<u>LEDs</u>

None

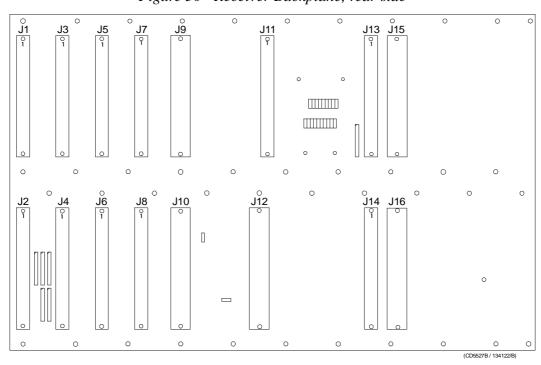


Figure 31 Receiver Backplane, front side

<u>Links</u>

There are four links on this backplane:

LK6: ON

LK7: ON, HVCLK to HVCKR

LK8: ON, DA0 to DB0

LK9: OFF

Test points

All the test points listed below are only used during development and debugging:

TP 1: GND

TP 2: Read pulse to the TRB

TP 3: Filter clk. to PDH's on the TRB

TP 4: Write pulse to the TRB

- **TP 5:** Sample and hold to PDH's on the TRB
- TP 6: Four times demodulater frequency to PDH's on the TRB

TP 7: TX enable to the TRB

TP 8: GND

TP 9: GND

TP 10: Write pulse to fifo on the BSP

TP 11: Read pulse to 2 port RAM on the SPTX

TP 12: Write pulse to 2 port RAM on the SPTX

TP 13: Test signal input to PDH's on the TRB

Only links LK7 and LK8 are applicable for system setup. These are closed as shown in the illustration.

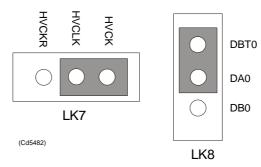
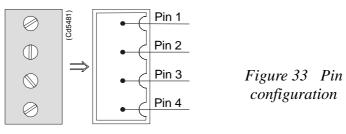



Figure 32 Applicable links

Connections

The sockets on the rear side of the backplane and their connections in the EM 300 Transceiver Unit are described in the tables below.

RXB-P2	Signal	Connection
1	STBY+	Bottom plate-Remote pin 1
2	STBY-	Bottom plate-Remote pin 2
3	ON	Bottom plate-Remote pin 3
4		

RXB-P3	Signal	Connection
1	HEAT	Wall sectTerminal block pin 1
2	STBY-	Wall sectTerminal block pin 2
3	TRIG	Bottom plate-pin 1
3	TRIG	RXB-J14 pin b1
4	DGND	Bottom plate-pin 2
4	DGND	RXB-P4 pin 2

RXB-P5	Signal	Connection
1	+12VH	TXB-P3 pin 4
2	HGND	TXB-P3 pin 2
3	HGND	TXB-P3 pin 3
4	+5VH	TXB-P3 pin 1

RXB-P6	Signal	Connection
1		
2		
3	HV	TXB-P4 pin 3
4	HV	TXB-P4 pin 4

RXB-P7	Signal	Connection
1		
2		
3	HV	TXB-P5 pin 3
4	HV	TXB-P5 pin 4

RXB-P8	Signal	Connection
1		
2		
3	HV	TXB-P6 pin 3
4	HV	TXB-P6 pin 4

RXB-P9	Signal	Connection
1	POW1	TX/RX Fan pin 1
2	POW2	TX/RX Fan pin 3
3	POW1	PU Fuse pin 3
4	POW2	PU Fuse pin 4

RXB-P13	Signal	Connection
1	+5 Vdc	TXB-P2 pin 1
2	+5Vdc	TBX-P2 pin 2
3	DGND	TBX-P2 pin 3
4	DGND	TBX-P2 pin 4

RXB-J16	Signal	Connection
d14	HGND	TXB-P5 pin 1
d14	HGND	TXB-P6 pin 1
d18	HGND	TXB-P5 pin 2
d18	HGND	TXB-P6 pin 2
z12	HGND	TXB-P4 pin 1
z16	HGND	TXB-P4 pin 2

RXB-P14	Signal	Connection
1	+5 Vdc	TXB-P2 pin 1
2	+5Vdc	TBX-P2 pin 2
3	DGND	TBX-P2 pin 3
4	DGND	TBX-P2 pin 4



Figure 34 The Receiver Backplane

4.7 Transmitter rack details

Location

The Transmitter Rack is located at the bottom of the Transceiver Unit. It holds one processor board and a number of transmitter boards.

 \rightarrow Refer to the illustration on page 49

The physical number of transmitter boards is defined by the specified system accuracy:

• A 1 degree system has 14 transmitter boards

Circuit boards and modules

64-Channel Transmitter Board (TX64)

Each of these circuit boards holds 64 individual power amplifiers, each controlled by the function controller.

 \rightarrow The circuit board is explained on page 93

Signal Processor Board TX (SPTX)

The processor board is used as a function controller.

 \rightarrow The circuit board is explained on page 80

Backplane (TXBP)

The Transmitter Rack uses a passive backplane.

 \rightarrow The TX Backplane is explained on page 97

64-Channel Transmitter (TX64)

Purpose and description

Once the transmission parameters have been calculated by the Signal Processor Tx (SPTX), each of the transmitter boards is addressed. The data-bus from the SPTX is connected to all the boards, and data for the individual transmitters is loaded into the onboard RAMs as they are addressed from the SPTX. The output from the TX64 RAM bank is connected to the output stages, which are implemented using Kongsberg Maritime-designed amplifier hybrids.

The physical number of TX64 boards fitted to the EM 300 transceiver depends on the chosen system specifications. Thus, up to 14 64-Channel Transmitter (TX64) boards are used.

A one degree transmitter has 864 elements in the transducer and a two degree transmitter 432 elements. Hence a one degree Tx system needs 14 TX64 boards, the last 32 transmitters on the TX64 #14 is not used.

A two degree Tx system needs seven TX64 boards. Here the last 16 transmitters are not used on TX64 board # 7.

How it works

<u>Overview</u>

The TX64 boards are controlled by the Signal Processor TX (SPTX), and the output signals are made available on the front mounted sockets. Flat ribbon cables connect these output pulses to the filters.

The TX64 board is equipped with two large front mounted connectors. Two LED indicators and one test point are located between these connectors. The test point is a ground (GND) connection, while the LEDs monitor the +5 Vdc and +12 Vdc supply voltages.

The TX64 board is equipped with eight onboard fuses. These fuses are located on the High Voltage (HV) supply line, and each fuse protects a group of eight transmitters. Fuse rating is 4 A, physical size is 5×20 mm.

The functions of the transmitter may be divided into three parts:

- The power unit (Power & Fuses)
- The digital control unit
- The analogue transmitter driver unit (TX Hybrid)

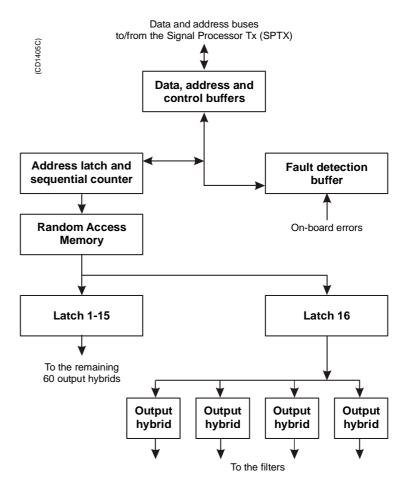


Figure 35 64-Channel Transmitter (TX64) block diagram

Power unit

The power unit includes the three separate supply voltages used and the components around them. The voltages are +12 Vdc, +5 Vdc and High Voltage (HV). The value of the HV depends on the desired output power. Typical range is +8 to +80 Vdc.

Digital control unit

The main function of the digital control unit is to supply the analogue transmitter unit with the correct driving signals.

The shape of the driving signals are temporarily stored in RAMs on the board. The RAMs are filled by the host processor. The drive signals for the output pulses are derived from the pattern. The signals are clocked and latched before they are supplied to the transmitter hybrids. The transmitted pulse is controlled by the address latches and the controller. The transmitted frequency is increased by 64 times, and is then supplied to the CLK input. The TX Enable (TXEN/) input enables the transmitters and controls the transmit pulse length.

Status information such as fuse blown can be read from the fault detect buffer on the data bus.

To lower the sidelobe level, IC U89 is omitted and a piggy back board is inserted. This piggy back board contains a PLD with doubled resolution for transmit beampattern.

Analogue transmitter unit

There are 64 transmitters on the board. Each of these is a thick film hybrid designed by Kongsberg Maritime. There are no frequency dependent components on the board. The transmitters are electrically designed into in groups of eight, each group being protected by a 4 A fuse. The transmitter outputs are brought to the front edge connectors P3 and P4.

Facilities

<u>LEDs</u>

D 9	+5 Vdc
D 10 +	·12 Vdc

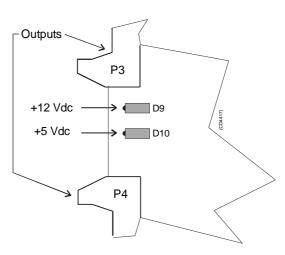


Figure 36 64-Channel Transmitter (TX64) front mounted devices

Test points

TP 1 GND

<u>Links</u>

A number of links are implemented on the board to allow for several different applications. The links are used as follows:

LK1 Selects PROM (when ON)
LK2 Selects RAM (when ON)
Link applications
The following links are ON (closed) in this application:
• LK2
Switches
None
<u>Connections</u>
The TX64 is equipped with the following connectors:
P 1 Connections to the external power supply
P 2 Interface to control processor
P 3 Outputs from channels 01-32. Front mounted
P 4 Outputs from channels 33-64. Front mounted
Fuses
F 1 TX group 1, Channels 01-08
F 2 TX group 2, Channels 09-16
F 3 TX group 3, Channels 17-24
F 4 TX group 4, Channels 25-32
F 5 TX group 5, Channels 33-40
F 6 TX group 6, Channels 41-48
F 7 TX group 7, Channels 49-56
F 8
Fuse rating is 4 A. Physical fuse size is 4 x 20 mm.

Oscilloscope check points

- The Clock (CLK) is input on pin P2 B24, and connected to buffer U90, pin 4. The clock frequency varies with the transmission frequency, and will be 64 times this. Frequency alterations during one transmission are achieved by changing the clock frequency.
- The TX Enable (TXEN/) is input on pin P2 A22, and connected to buffer U90, pin 2. The TXEN/ pulse is the transmit trigger, and the length of the TXEN is also the length of the transmitted pulse. For EM 300 the TX frequency is from 30 to 34 kHz.

Transmitter Backplane (TXBP)

Purpose and description

The purpose of the transmitter Backplane is to enable communication between the circuit boards plugged into it, and between these circuit boards and the external circuitry in the cabinet. The TXBP is located behind the bottom wired rack in the Transceiver Unit, and holds the following circuit boards:

- 64-channel Transmitter Board (TX64)
- Signal Processor Board TX (SPB31)

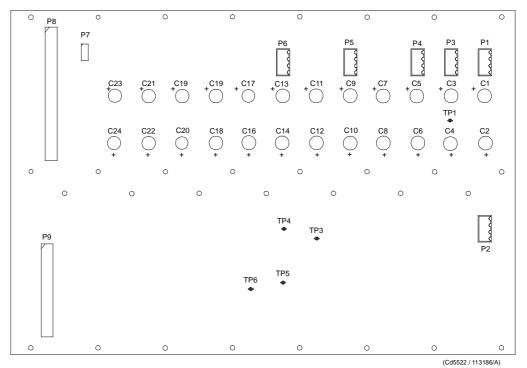


Figure 37 Transmitter Backplane, rear side

How it works

There are no active components on this backplane.

Facilities

<u>LEDs</u>

None

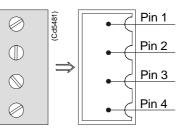
<u>Test points</u>

The following testpoints are only used during development and debugging.

- TP 1: DGND
- TP 2: DGND
- TP 3: SMEM/ Active low when data is read from TX64

TP 4: DMEM/ Active low when data is written to TX64 **TP 5:** DGND

TP 6: TXE/ Active low when transmit is ongoing.


<u>Links</u>

None.

Connections

The sockets on the rear side of the backplane and their connections in the EM 300 Transceiver Unit are described in the tables below.

Figure 38 Pin configuration

TXB-P1	Signal	Connection
1	GND	PU power supply
2	GND	PU power supply
3	+12 Vdc	PU power supply
4	+12 Vdc	PU power supply
TXB-P2	Signal	Connection
1	+5 Vdc	RXB-P13 pin 1
2	+5 Vdc	RXB-P13 pin 2
3	DGND	RXB-P13 pin 3
4	DGND	RXB-P13 pin 4
ТХВ-РЗ	Signal	Connection
1	+5 VH	RXB-P5 pin 4
2	HGND	RXB-P5 pin 2
3	HGND	RXB-P5 pin 3
4	+12 VH	RXB-P5 pin 1
TXB-P4	Cianal	Connection
	Signal	
1	HGND	RXB-P6 pin 1
2	HGND	RXB-P6 pin 2
1	HGND	RXB-J16 pin z12
2	HGND	RXB-J16 pin z16
3	HGND	RXB-P6 pin 3
4	HGND	RXB-P6 pin 4

TXB-P5	Signal	Connection
1	HGND	RXB-P7 pin 1
2	HGND	RXB-P7 pin 2
1	HGND	RXB-J16 pin d14
2	HGND	RXB-J16 pin d18
3	HGND	RXB-P7 pin 3
4	HGND	RXB-P7 pin 4

TXB-P6	Signal	Connection
1	HGND	RXB-P8 pin 1
2	HGND	RXB-P8 pin 2
1	HGND	RXB-J16 pin d14
2	HGND	RXB-J16 pin d18
3	HGND	RXB-P8 pin 3
4	HGND	RXB-P8 pin 4

The bleeder is mounted on the Processing Unit power supply cover.

Figure 39 The Transmitter Backplane

Blank page

5 **TRANSCEIVER UNIT 125-211293**

5.1 Description and main functions

Overview

The EM 300 Transceiver Unit performs the reception, data acquisition, received signal processing and transmission for the multibeam echo sounder system. The cabinet holds three wired racks containing the system circuit boards.

- The top **Processing Rack** holds the complete Processing Unit with its own power supply. This unit provides data acquisition, signal processing and function control.
- The middle **Receiver Rack** holds the receiver boards, a controller, two power supplies and a large capacitor bank.
- The bottom **Transmitter Rack** holds the transmitter circuitry and a dedicated controller.

Three different versions of the Transciever Unit have been delivered. The registration number of the Transceiver Unit will determine which version you have:

125-210131, more information on page 41.

125-211293, more information on page 101.

125-218182, more information on page 161.

This number is to be found on the Transceiver Unit chassis.

All versions are described in this manual. Please check your Transceiver Unit to find out which version you have.

5.2 Transceiver Unit 125-211293

This chapter provides the following information:

- → Circuit board descriptions, page 116.
- \rightarrow Description and main functions, page 101.
- \rightarrow Transceiver Unit outline, page 103.
- \rightarrow Transceiver Unit racks, page 108.
- \rightarrow Theory of operation, page 112.
- \rightarrow Processing rack, details, page 117
- \rightarrow Receiver rack, details, page 134.
- \rightarrow Transmitter rack, details, page 152
- → Circuit board descriptions, page 116.

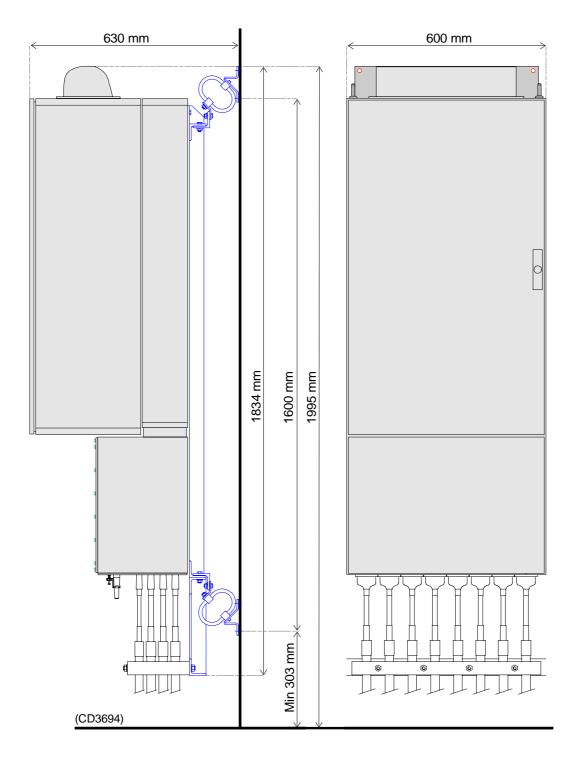


Figure 40 Standard EM 300 Transceiver Unit - Outline dimensions

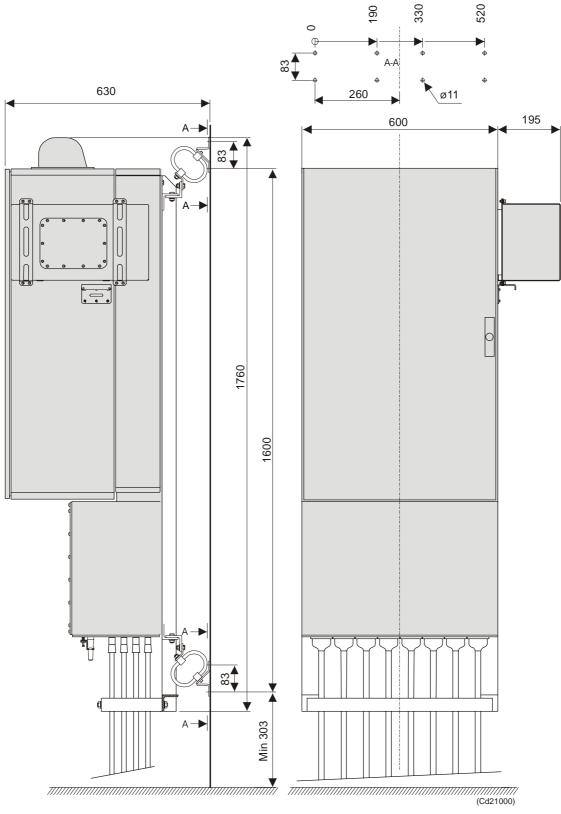


Figure 41 EM 300 Transceiver Unit with the optional Raw Data Logger - Outline dimensions

→ Please refer to the Raw Data Logger Instruction Manual for maore information about installation with Raw Data Logger.

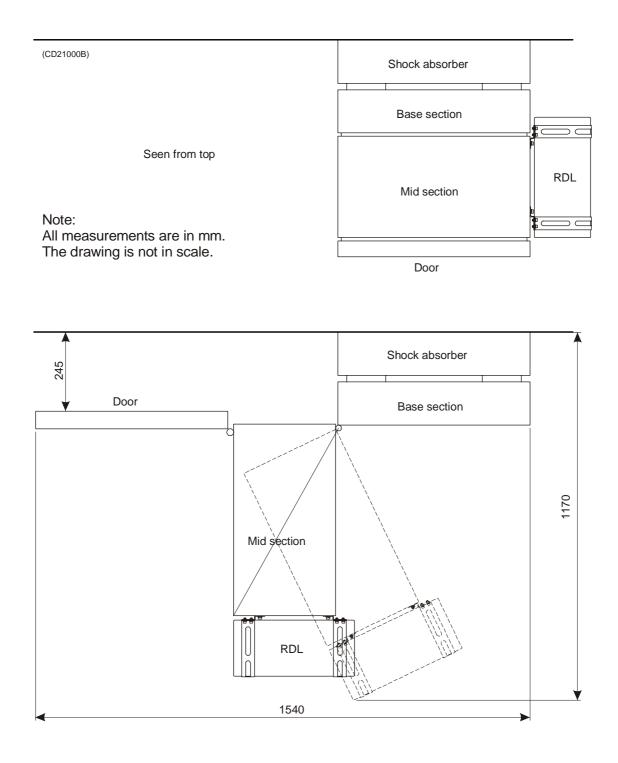


Figure 42 Transceiver Unit with Raw Data Logger, seen from above.

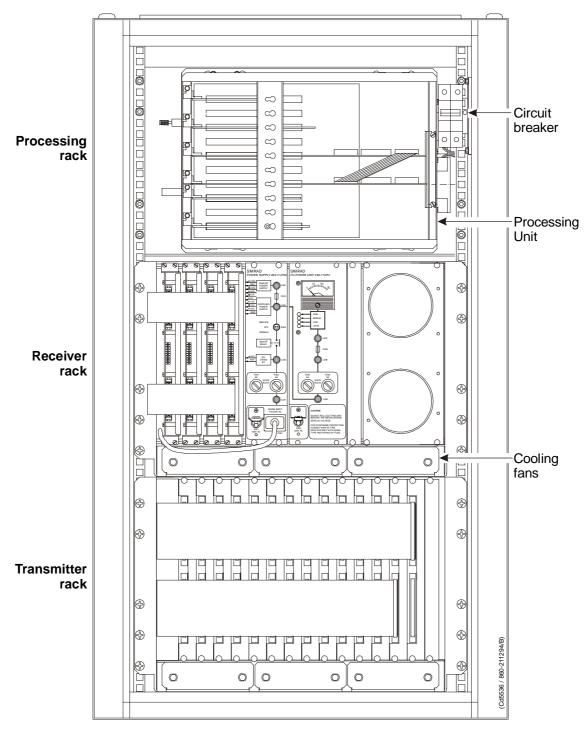


Figure 43 EM 300 Transceiver Unit wired racks

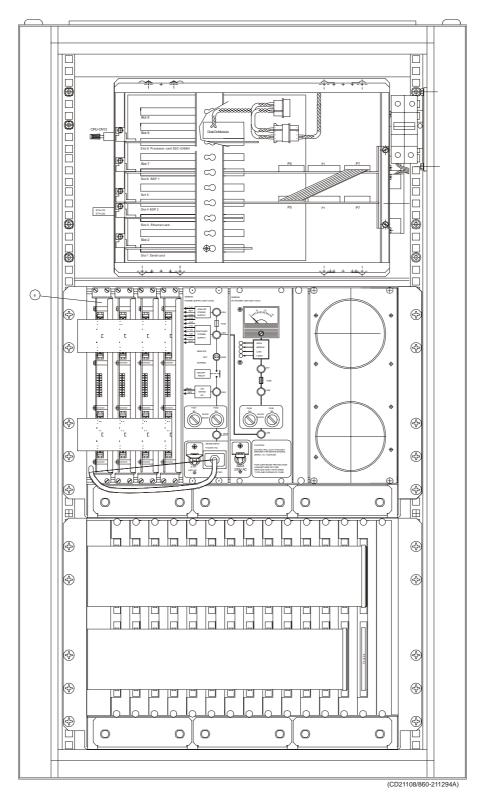


Figure 44 Transceiver Unit - wired

The Processing Rack

The Processing Rack is located at the top of the Transceiver Unit. It holds a chassis with several circuit boards, fans and a power supply. A ground strap and a circuit breaker for the power supply is also available, but these are mounted on the main rack, and not on the shelf.

The Processing Rack holds the following circuit boards and modules:

- 4-Ports Serial Line board
- Beamformer & Signal Processor (BSP1 and BSP2)
- Ethernet Adapter
- Control Processing Unit board
- DiskOnModule flash disk (mounted on the Control Processing Unit board)
- Power supply
- Fan
- Motherboard
- → A more detailed description of all the circuit boards and modules is found on page 117.

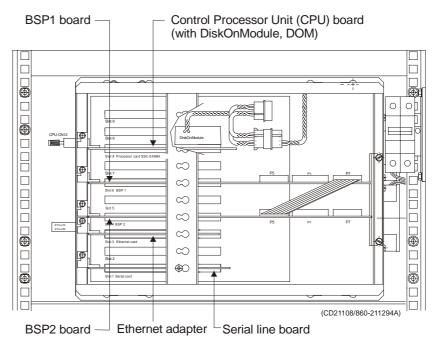


Figure 45 Processing Rack, circuit board locations

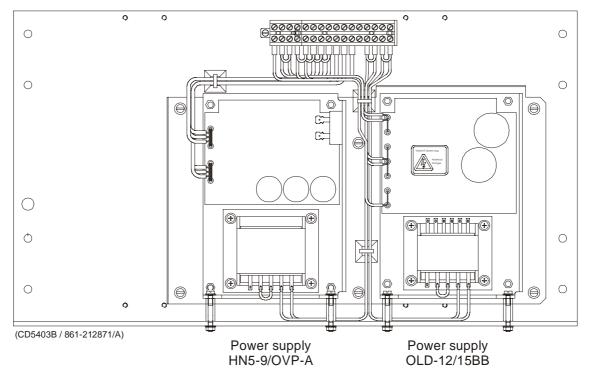
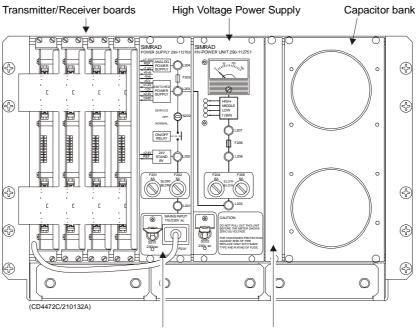



Figure 46 Power supplies on the rear panel

The Receiver Rack

The Receiver Rack is located at the middle of the Transceiver Unit. It holds several circuit boards, power supplies and a capacitor bank. All the units are accessed from the front of the rack.

Low Voltage Power Supply Signal Processor Board RX (SPBRX)

Figure 47 The Receiver Rack

The Receiver Rack holds the following circuit boards and modules (from left):

- TRB 32/Receiver board (max 4)
- Low Voltage Power Supply
- High Voltage Power Supply
- Signal Processor Board RX (SPRX)
- Capacitor bank
- \rightarrow A more detailed description is found on page 134.

The Transmitter Rack

The Transmitter Rack is located at the bottom of the the Transceiver Unit. It holds one processor board and a number of transmitters.

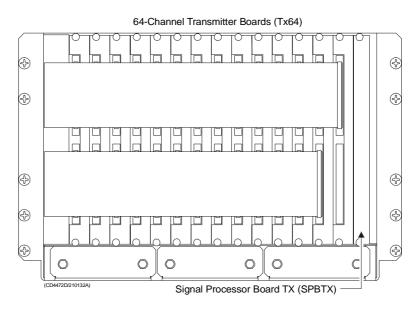


Figure 48 The Transmitter Rack

The Transmitter Rack holds the following circuit boards and modules (from left):

- 64-Channel Transmitter Board (TX64)
- Signal Processor Board TX (SPTX)
- \rightarrow A more detailed description is found on page 152

5.3 Theory of operation

Overview

This chapter presents a functional description of the Transceiver Unit.

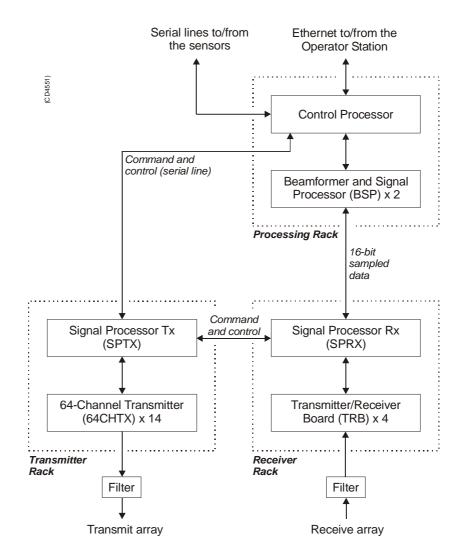
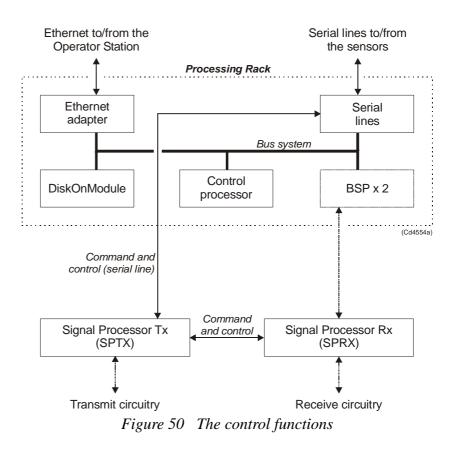


Figure 49 Transceiver Unit, simplified block diagram

Simplified block diagram

The simplified block diagram for the Transceiver Unit presents the following main functions:


- Transmission
- Reception
- Processing

The various parameter settings made on the Operator Station are sent to the Control Processor in the Processing Rack. The information (roll, pitch, pulse length etc.) is interpreted, and passed on to the Signal Processor TX (SPTX), which is the "master" processor in the TX/RX system.

After the transmission, the Signal Processor RX (SPRX) is instructed to receive the samples for all the receiver staves and pass them on to the two Beamformer and Signal Processors (SBP's) in the Processing Rack.

Control functions

The control functions in the Transceiver Unit are mainly handled by the three processor boards, but additional peripheral boards are also used. The majority of the control boards are contained in the Processing Unit.

The Control Processor in the Processing Unit is not equipped with interface capabilities, and thus requires external boards to handle ethernet and serial lines interface. It also relies on an external memory board for the software contained in the ROM device. All the peripheral boards used here are commercial. Note

Newer Control Processor Units (CPU) handles ethernet interface and have a DiskOnModule installed (containing software). This kind of CPU also relies on an external board to handle serial line interface.

One serial line is used to interface the command and control signals to and from the TX/RX controllers. The Signal Processor TX is the "master".

External synchronisation

The serial line RTS and CTS signals are used for external synchronisation. In addition a trig out signal is issued by the TRU.

Levels: RTS, CTS: H=high= +3 to +15 V L=low= -3 to -15 V Trig out: TTL Level

Outputs from TRU:

Trig out=1	TX is off(<u>H</u> igh TTL level)
Trig out=0	TX is active(<u>L</u> ow TTL level)

RTS=HTRU is ready for a new pingRTS=LTRU is not ready

RTS is pin 7 on the CPU card D connector. (Pin 6 on EM120 and EM300 "remote" plug).

Inputs to TRU:

CTS=H Ping command CTS=L Wait

CTS is pin 8 on the CPU card D connector. (Pin 7 on the EM120 and EM300 "remote" plug). The CTS pulse length must be minimum 30 milliseconds.

Gnd is pin 5 on the CPU card D connector. (Pin 8 on EM120 and EM300 "remote" plug).

lypical	sequence	e:

CIS		
	тх	
	Command	
RTS		
	(TRU ready) (TRU busy	(TRU busy)
	(INO leady) (INO busy) (INO Dusy)
Trig out		
Trig out		
	TX	
	Delas	
	Pulse	

When the TRU is ready for a new ping, RTS is set to H. When the external device is ready for a new ping, CTS shall be changed to H. The TRU will then start a ping, change RTS to L (busy), and the Trig out will be low during the transmit pulse. After the Trig out is received, the external device should turn CTS to L. (Or at least keep it high for 35 milliseconds).

When the received period is finished and the TRU is ready for a new ping, the RTS will be changed to H, and the TRU will wait for new trigger (a high level on CTS).

If CTS is H all the time, or if external sync in the installation menu is switched off, the TRU will ping at its maximum rate.

5.4 Circuit board descriptions

Overview

This chapter describes all the circuit boards and modules in the EM 300 Transceiver Unit. A functional description with a block diagram is provided, as well as the facilities provided for maintenance.

Remember that all versions of the Transceiver Unit is in this manual. Different boards and power supplies are therefore described for the EM 300 system. Check the reg.no. on your Transceiver Unit to find out which version you have.

5.5 Processing rack details

Location

The Processing Rack is located at the top of the the Transceiver Unit. It holds a chassis with several circuit boards, fans and a power supply. A ground strap and a circuit breaker for the power supply is also available, but these are mounted on the main rack, and not on the shelf.

Circuit boards and modules

4-ports Serial Line Board

This is a commercial circuit board. It provides the Transceiver Unit with four serial lines.

 \rightarrow The interface board C114P is explained on page 118.

Beamformer & Signal Processor (BSP)

These are the main processing boards in the Transceiver Unit.

 \rightarrow The circuit board is explained on page 120.

Control Processor Unit board (CPU)

This processor board acts as a function controller. It holds a DiskOnModule flash disk.

 \rightarrow The circuit board, SSC-5x86H, is explained on page 123.

DiskOnModule (DOM)

This flash disk is mounted on the Control Processor Unit board.

Ethernet Adapter

This is a commercial circuit board. It provides the Transceiver Unit with the ethernet communication to the Operator Station.

 \rightarrow The circuit board is explained on page 128.

Power supply

The Processing Rack contains two analogue power supplies located behind the circuit board.

 \rightarrow The power supplies are explained on page 130.

Motherboard

This is a commercial circuit board.

 \rightarrow The circuit board is explained on page 133

Fan

The fans are located on the right side of the Processing Rack, when seen from the front.

4-Ports Serial Line Board (C114P)

Purpose and description

This is a commercial circuit board designed and produced by Moxa Technologies. It is identified as C114P, and is located in the Processing Rack.

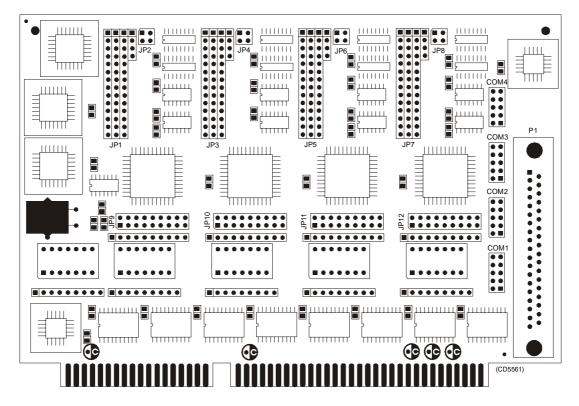


Figure 51 The C114P layout

How it works

Each of the 4 ports can be configured to RS-232, RS-422, or RS-485 interface individually, but only RS-232 will work on the EM 300 system.

Facilities

<u>LEDs</u>

None.

Jumpers

The C114 is set up with IRQ 11 on the jumpers JP9, JP10, JP11 and JP12.

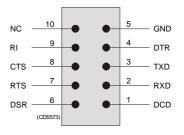
<u>Links</u>

Note

The following settings are only valid for new boards. For boards older than spring 2001 the settings will be inverted. The settings that are OFF on these drawings will be ON and vice versa.

The settings of the C114P DIP switches for use in the EM 300 are listed in the table below:

Switch	1	2	3	4	5	6	7
SW 5	ON	ON	OFF	OFF	OFF	ON	ON
SW 1	ON	ON	ON	ON	OFF	OFF	ON
SW 2	OFF	ON	ON	ON	OFF	OFF	ON
SW 3	ON	OFF	ON	ON	OFF	OFF	ON
SW 4	OFF	OFF	ON	ON	OFF	OFF	ON


Connections

The C114P contains one DB-37 female connector on the rear side of the circuit board. It comes with a cable; one terminal is a 37-pin male D-type and the other terminal is a four 9-pin male D-type connectors. This is not used.

\rightarrow Refer to figure 52 for pin assignments.

In addition, four 10-pin pin-head connectors corresponds to the DB-37 connector on the board of C114P. These four connectors are called COM1, COM2, COM3 and COM4, and are connected directly to the Transceiver Unit bottom plate.

Figure 52 10-pin header connector pin assignment

Beamformer & Signal Processor (BSP)

Purpose and description

The Beamforming & Signal Processing (BSP) board is a multi digital signal processor (DSP) board. It is designed to perform the beamforming and signal processing in sonars and multibeam echo sounders. It is controlled from a host processor.

The processing power in the Beamforming & Signal Processing (BSP) board is based on eight Texas TMS320C50 fixed point digital signal processors working in parallel while beamforming the data. Next, there are four Texas TMS320C44 floating point digital signal processors interconnected to use both parallel and sequential processing of the beamformed data from the fixed point processors.

The Beamforming & Signal Processing (BSP) board is a single slot full length standard ISA format circuit board made to fit into a personal computer.

How it works

The Beamforming & Signal Processing (BSP) board contains four main sections:

- Sonar Input Data
- Beamforming
- Signal Processing
- Host Interface

The **Sonar Input Data** interfaces an 18-bit wide and 1k deep Input FIFO (First-In-First-Out) register. This input FIFO holds the data received from the transducer array through the receiver processing circuitry. A dedicated digital signal processor reads the input FIFO.

There are two identical **Beamforming** digital signal processing branches. Each consists of four digital signal processors and a 16-bit wide and 8k deep dual port memory (DPRAM). The two branches are exchanging data by means of this DPRAM.

The **Signal Processing** section comprises three digital signal processors dedicated to do further processing of the beamformed data.

The **Host Interface** function is maintained by the master processor on the Beamforming & Signal Processing (BSP) board. It exchanges data with the host processor via a 16-bit wide and 8k deep dual port memory (DPRAM) on the ISA bus.

Facilities

<u>LEDs</u>

D1 (LED): C44 D

Test points

There is one test point for each C50 digital signal processor (eight total). These testpoints are all connected to the XF/ signal which is active while that particular C50 access the shared DPRAM.

There is also one test point for each C44 digital signal processor (four total). These test points are connected to the IIOF2/ signal, which is a general purpose I/O port bit that can be controlled by the software.

The C44-D testpoint is also connected to a light emitting diode (D1) for visual observation. The LED will be activated during each ping.

TP1	C50 E0
TP2	C50 E1
TP3	C50 E2
TP4	C50 E3
TP5	C50 F0
TP6	C50 F1
TP7	C50 F2
TP8	C50 F3
TP11	C44 A
TP12	C44 B
TP13	C44 C
TP14 (& D1)	C44 D

The testpoints will be active when the corresponding processor is working.

<u>Links</u>

A number of links are implemented on the board to allow for several different applications. Links LK1, LK2 and LK3 are used to identify the board as one out of maximum eight boards in one system.

LK3	LK2	LK1	BSP ID
0	0	0	BSP 0
0	0	1	BSP 1
0	1	0	BSP 2
0	1	1	BSP 3
1	0	0	BSP 4
1	0	1	BSP 5
1	1	0	BSP 6
1	1	1	BSP 7

Link applications

The following links are ON (closed) in this application:

- BSP0 is the master processor (no links).
- BSP1 is the slave processor (link LK1).

Switches

There are no switches on the board.

Connections

The Beamforming & Signal Processing (BSP) holds the following plugs and sockets:

P1	Sonar input data
P2	ISA bus component
P3	Emulator
P4	Direct memory access
P5	External communication port
P6	Test access port
P7	External communication port

The P1, sonar input data, is connected to SPRX via a flat cable plug connected to the Reciever Backplane, plug P11.

Control Processor Unit board

Purpose and description

This circuit board is an ISA Half-sized Single Board Computer delivered by ICP. It is equipped with a 486 CPU and advanced high performance multi-mode I/O. There are two variants of the circuit board that might be placed in the system. These are identified as:

• SSC-486H

or

• SSC-5x86H

Both of them are explained in this chapter. The Control Processor Board is located in the Processing rack.

Specifications

An advanced high performance super AT I/O chip is used in the SSC. Both on-chip UARTs are compatible with the NS16C550. The parallel port and IDE interface are compatible with IBM PC/AT and XT architecture's. The super AT I/O chip incorporates sophisticated power control circuitry (PCC). The PCC supports multiple low power down modes.

In addition, both the SSC-486H and the SSC-5x86H, provides two 72-pin SIMM sockets for their on-board DRAM. The 72-pin accepts 1MB, 2MB, 4MB, 16MB and 32MB SIMM. Thus, the total on-board memory can be configured from 1MB to 64MB.

SSC-486H SSC-5x86H CPU 486SX/DX/DX2 or DX4 486SX/DX/DX2/DX4 or Cyrix/AMD 5x86 Bus PC/104 bus ISA bus and PC/104 bus **DMA channels** 7 7 Interrupt levels 15 15 Chipset UM8498F and UM8496 M1489 and M1487 DS-12887 chip and DS-12887 chip and **Real-time** clock/calendar quartz oscillator, 128B quartz oscillator, 128B CMOS memory, pow-CMOS memory, powered by lithium battery ered by lithium battery for over 10 years of for over 10 years of data retension. data retension. 1MB to 64MB **RAM** memory 1MB to 64MB, EDO and standard DRAM supported.

The Half-sized Single Board Computers SSC-486H and SSC-5x86H provides the following specifications:

	SSC-486H	SSC-5x86H	
IDE hard disk drive interface	Up to two IDE hard drives.	Up to two PCI Enhance IDE hard drives.	
Floppy disk drive interface	Two 2.88MB, 1.44MB, 1.2MB, 720KB or 360KB floppy disk drives.	Two 2.88MB, 1.44MB, 1.2MB, 720KB or 360KB floppy disk drives.	
High speed serial ports	Two NS16C550 com- patible UARTs	Two NS16C550 com- patible UARTs	
Bi-directional Parallel Port	Yes	Yes	
Watch-dog timer	Can be set by 1, 2, 10, 20, 110 or 220 seconds period. Reset or NMI was generated when CPU did not period- ically trigger the timer. Your program use hex 043 and 443 to control the watch-dog and generate a system reset.	Can be set by 1, 2, 10, 20, 110 or 220 seconds period. Reset or NMI was generated when CPU did not period- ically trigger the timer. Your program use hex 043 and 443 to control the watch-dog and generate a system reset.	
External power connector	Yes	Yes	
Keyboard connector	Yes	Yes	
Mouse	PS/2 Mouse Port on- board	PS/2 Mouse Port on- board	
Power Consumption	+5V @ 2.5A (486DX2-66, 4MB RAM) +/- 12V @ 20mA (for RS-232 only)	+5V @ 1.75A (5x86-133, 4MB RAM)	
Operating temperature	0° ~ 60°C (CPU needs cooler)	0° ~ 60°C (CPU needs cooler)	

[→] The set-up procedures for SSC-486H and SSC-5x86H are described on page 258

Facilities

Jumpers

All the SSC-5x86H- and SSC-486H circuit board's jumpers are preset at the factory. The default settings are listed in the tables.

 \rightarrow Refer to figure 53 for different jumper settings.

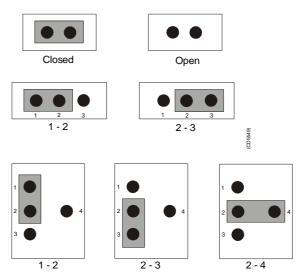


Figure 53 Different applicable jumper settings

	Jumpers	Settings	Description
SSC-486H CPU	JP1	2 - 3	-
	JP2	1 - 2 3 - 4	-
	JP3	Open	-
	JP4	Open	-
	JP5	1 - 2	-
	JP6	Open	-
	JP7	Open	-
CPU Clock Generator Speed (33 MHz)	JP8	1 - 2 Closed 3 - 4 Closed 5 - 6 Open 7 - 8 Open	-
CPU Voltage (+3.3 V)	JP12	2 - 3	-
	JP24	Open	-
Upgrade the External Cache (128KB, 32K x 8)	JP13	2 - 3	-
	JP14	1-2 3-4	-
Watch-Dog Timer, Active Type	JP18	1 - 2	Open when WDT time-out
WDT Time-out period (10 sec.)	JP17	1 - 2 Open 3 - 4 Closed 5 - 6 Open 7 - 8 Open	-

	Jumpers	Settings	Description
Parallel Port Interface, Parallel Port Interrupt Setting (IRQ7)	JP22	1 - 2	-
Parallel Port Data Request Setting (DRQ3)	JP20	2 - 3	-
Parallel Data Acknowledge (DACK3)	JP19	2 - 3	-
Serial Port Interface, COM1 Serial Port Interrupt Setting (IRQ4)	JP21	1 - 2	-
COM2 Serial Port Interrupt Setting (IRQ3)	JP23	1 - 2	-
IDE Host Adapter Interface	JP11	Open	IDE IOCHDRY Non-Connected
FDC47C665 Multi-I/O Chipset	JP16	Open	Enable FDC37C665
PS/2 Mouse IRQ Selection (IRQ12)	JP15	Closed	-

The SSC-5x86H circuit board:

	Jumpers	Settings	Description
SSC-5x86H CPU	JP1	2 - 3	-
	JP2	2 - 3	-
	JP3	3 - 4	-
	JP4	3 - 4	-
	JP5	3 - 4	-
	JP6	5 - 6	-
	JP7	2 - 3	-
	JP8	2 - 3	-
	JP9	Closed	-
	JP10	Open	-
CPU Clock (33MHz)	JP11	1 - 2 Closed 3 - 4 Closed	-
	JP12	Open	-
	JP14	1 - 2	-
CPU Voltage (+3.3V)	JP13	2 - 3	-
Watch-Dog Timer, Active Type	JP15	1 - 2	Open when WDT time-out

	Jumpers	Settings	Description
WDT Time-out period (10 sec.)	JP16	1 - 2 Open 3 - 4 Closed 5 - 6 Open 7 - 8 Open	-
DiskOnChip Memory Address	JP17	5 - 6	Address E000
PS/2 Mouse	JP18	Closed	Enable PS/2 Mouse, IRQ12

Connections

COM1 is used for external sync (RTS, CTS). COM1, pin RX/TX, is also connected to the test connector at the Transceiver Unit bottom plate, for debug purposes and factory production testing.

 \rightarrow Refer to description page 114.

1PPS signal is connected from the parallel port (signal on pin 10, GND (ground) on pin 23) to the bottom plate in the Transceiver Unit.

Ethernet Adapter

Purpose and description

This is a 16-bit ISA adapter designed and produced by 3Com, identified as 3C509B-COMBO. The purpose of the adapter is to connect the transceiver unit to the operator unit. The circuit board is located in the Processing Rack.

How it works

The cable types and connector specifications in the Ethernet Adapter are:

- 10BASE5 thick Ethernet coaxial, 10BASE2, fibre etc. with an AUI connector.
- 10BASE2 thin Ethernet coaxial with a BNC connector.
- 10BASE-T, twisted-pair cable with a RJ-45 connector.
- \rightarrow The 3C509B-COMBO edge connectors is shown in figure 54.

The 3C509B-COMBO has a LED for the link beat. This LED confirms that there is an active connection between the adapter and the hub. The thin ethernet segment is terminated at both ends with a 50 Ω terminator.

The maximum bus speed supported by the Ethernet Adapter is 10 MHz.



Figure 54 The 3C509B-COMBO backplate with its connectors

Facilities

<u>LEDs</u>

Confirms that there is an active connection between the adapter and the hub.

- If the LED is on, the link beat is working. (The connection is correct).
- If the LED is off, the link beat has not been established or there is a problem with the connection between the adapter and the hub.
- If the LED is blinking, the cable polarity is reversed.
- \rightarrow See figure 54

Connections

The internal wiring gives access to the BNC and RJ45 connections at the bottom plate of the Transceiver Unit.

Setup of the board

If the type of ethernet cable is known at delivery time, the board is set up accordingly. If not, the board is set up for 10BASE-T (RJ-45).

It is difficult to reconfigure the board on site. (A PC with ISA-bus and special software is needed).

Processing Unit Power Supply

Note The pa

The power supply distributes voltages that can result in personal injuries. Please take necessary precautions.

Purpose and description

The Processing Rack contains two analogue power supplies (HN5-9/OVP-A and OLD-12/15BB). The purpose of those is to feed power to the circuit boards in the Processing Rack, respectively 5 Vdc and \pm 12 Vdc, and +12Vdc to the Transmitter Rack.

The power supplies are located on the rear side of the Processing Rack, hidden behind a cover plate.

How it works

This is two analogue power supplies that feed respectively 5 Vdc and ± 12 Vdc to the Processing Rack. Both have connections to the same 16-pin socket.

In addition, the +12Vdc is running the two fans in the Processing Rack and feeding +12Vdc to the Transmitter Rack.

From this socket the connections goes further to the PU backplane, to the fans in the Processing Rack and to the main circuit breaker. It is also connected to the TX backplane with a 12 Vdc and a ground signal.

→ Refer to the block diagram in figure 55, with 230 Vac, and figure 56, with 110 Vac.

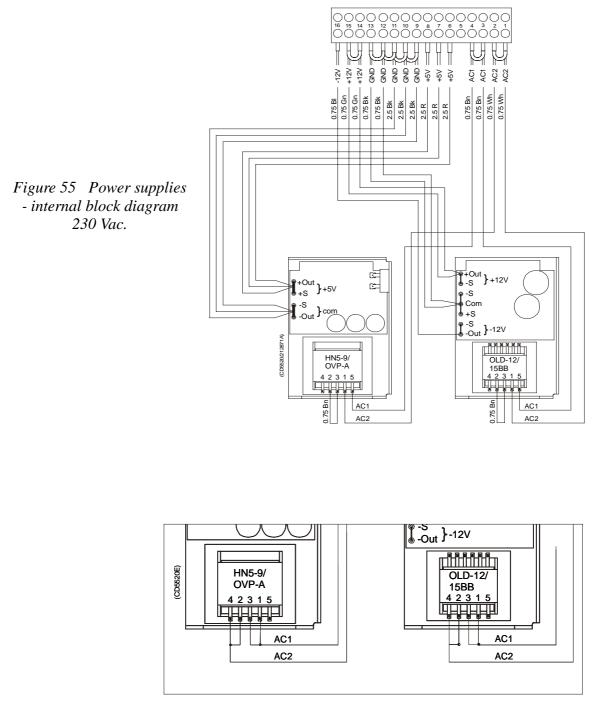


Figure 56 Power supplies - internal block diagram (110 Vac).

Facilities

Connections

Pins 2, 4, 5 and 9 are not in use.

Pin	Signal	Connection
1	AC2	Circuit breaker
3	AC1	Circuit breaker
6	+5 Vdc	PU backplane-P9 pin 4
7	+5 Vdc	PU backplane-P9 pin 5
8	+5 Vdc	PU backplane-P9 pin 6
10	GND	PU backplane-P8 pin 5
10	GND	TX backplane-P1 pin 1
11	GND	PU backplane-P8 pin 6
11	GND	TX backplane-P1 pin 2
12	GND	PU backplane-P9 pin 1
13	GND	PU backplane-P9 pin 2
13	GND	PU backplane-P9 pin 2
14	+12 Vdc	Fans in PU
14	+12 Vdc	TX backplane-P1 pin 3
15	+12 Vdc	Fans in PU
16	-12 Vdc	PU Backplane-P8 pin 4

Motherboard

How it works

This is a passive backplane with standard ISA-bus.

Facilities

<u>LEDs</u>

The board has four LEDs:

- + 5V
- - 5V
- + 12V
- - 12V

- 5V is not used and is not lit. The three others should be lit at all times.

Test points

None

<u>Links</u>

None

Connections

+ 5V, + 12V and - 12V.

5.6 Receiver rack details

Location

The Receiver Rack is located at the middle of the the Transceiver Unit. It holds several circuit boards, power supplies and a capacitor bank.

 \rightarrow Refer to the illustration on page 110.

Circuit boards and modules

Transmitter/Receiver board

These four boards hold the amplifiers for all the individual receive channels. (The boards may also provide power amplification of the transmitted signal, but as this function is not used in the EM 300, these components have been omitted).

 \rightarrow The circuit board is explained on page 135.

Low Voltage Power Supply

This is a commercial linear power supply mounted on a chassis for easy replacement. It also contains linear supplies for the TRB's.

 \rightarrow The Low Voltage Power Supply is explained on page 138.

High Voltage Power Supply

This is a switching power supply. It provides the high output voltage for the transmitters, and uses the Capacitor bank to store the energy between the pings.

→ The High Voltage Power Supply HVPU is explained on page 141.

Signal Processor Board RX (SPRX)

The processor board is used as a function controller. This is a common circuit board whose name is SPB31, and it is both used in the Transmitter Rack and the Receiver Rack.

 \rightarrow The Signal Processor Board is explained on page 142.

Backplane (RXBP)

The Receiver Rack uses a passive backplane. All connections to the circuit boards (except transmission signals) are made on this backplane.

Capacitor bank

This unit stores transmission energy temporarily.

Transmitter/Receiver Board (TRB)

Purpose and description

The purpose of the Transmitter/Receiver Board (TRB) is to provide amplification of the signals received from the Preamplifier Unit. The board has 32 individual channels. The board is designed to provide transmission as well, but these components are not mounted on the circuit boards used in the EM 300 Transceiver Unit

The TRB is fastened to a combined strengthening plate and heat sink which covers the entire component side of the board and also forms a "front panel" to the board. The board is located in tracks within the Transceiver Unit to ensure correct location, and is held in position by four screws.

The TRB has two 34-pin connectors on its front edge which carry the signals from the Preamplifier Unit.

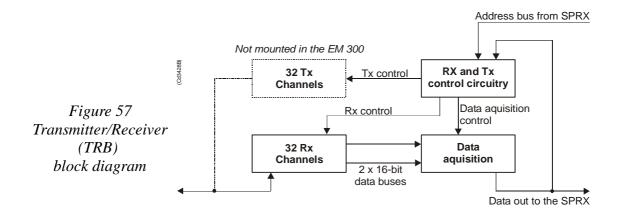
A one degree system needs four Transmitter/Receiver (TRB) boards. This means that all 128 channels are used.

A two degree system needs two Transmitter/Receiver (TRB) boards, while a four degree system only have one.

How it works

Transmission

The TRB contains a control interface that controls the 32 transmitters on the board.


The transmitters can be controlled individually to enable beamforming of the transmitted pulse.

Reception

The TRB receives signals from 32 transducer elements. The signals are individually amplified, time-varied-gain regulated, demodulated, and analogue-to-digital converted. The converted signals are then output from the board and sent to the BSP's for further processing.

Dimensions (Width x Heigh x Depth)	220 x 233.35 x 0.32 mm
Analogue input/output	32 channels, 60W, + T/R switch
Connectors	Two 96-pin euro on back edge of board Two 34-pin flat cables on front edge
Analogue to digital	12-bits resolution I/Q simultaneously converted to 32-bit latched bus
Power requirements	+ 5 Vdc, 8 Vdc, + 24 Vdc

Technical details

Facilities

Test points

The test points listed below are available to assist the maintenance engineer. They are located on the front edge of the board between the two connectors, in front of the corresponding LED.

AVCC analogue voltage + 5 V
AVDD analogue voltage NA
VCC digital voltage + 5 V
AVEE analogue voltage
HV1 high voltage transmitter + 8 - + 80 Vdc
HV2 high voltage transmitter NA
HV3 high voltage transmitter NA
HV4 high voltage transmitter NA
TX transmitter indicator NA

The testpoints marked with NA are not used on EM 300.

<u>Links</u>

The TRB holds no links that can be set by the maintenance engineer.

Switches

The TRB holds no switches that can be adjusted by the maintenance engineer.

<u>LEDs</u>

The TRB holds ten red LEDs on its front edge, mounted in a vertical line between the connectors. When these LEDs are lit, they indicate the presence of the corresponding voltage levels.

Connectors

The TRB carries four connectors, two located at each end of the board. P1 is a 96-pin, male right-angled euro-connector, located on the rear edge of the board, carrying power. P2 is a 96-pin, male, right-angled euro-connector, also located on the rear edge of the board, carrying power and digital control signals. P3 and P4 are 34-pin, male, right-angled connectors with ejector/latch, located on the front edge of the board. Each connector carries 16 input/outputs to the transducer/preamplifier.

Low Voltage Power Unit (LVPU)

Purpose and description

The purpose of the Low Voltage Power Unit (LVPU) is to supply power to all the modules in the Transceiver Unit, except the high voltage power for the transmission, power to PU and ± 12 Vdc.

The Low Voltage Power Unit is located between the Transmitter/Receiver Boards and the High Voltage Power Supply in the Receiver Rack. The power supply is a plug-in module. It has two front mounted fuses, one service switch, and one switch to select 115 or 230 Vac mains input.

Switched power supply
MAP55-4001Mains transformer Ulveco N14034-TD
Used in analogue power supply

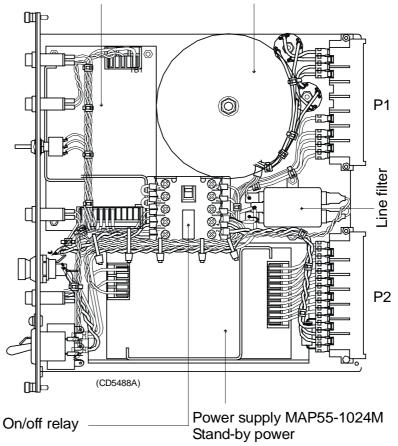
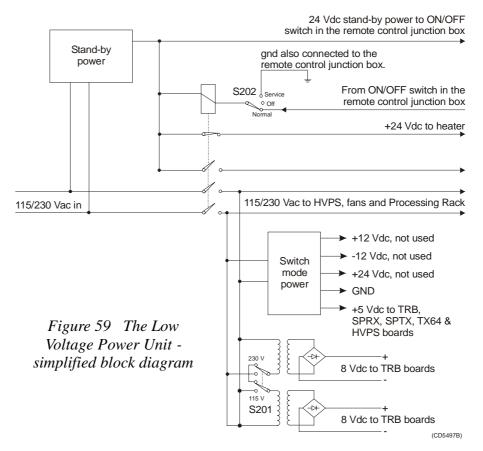


Figure 58 The Low Voltage Power Supply

How it works


The power unit contains two separate power supplies. The output of the stand-by power supply is 24 Vdc.

The power unit has a service switch. When this is set to normal, the power supply is controlled by the on/off relay. This relay is remote controlled from a switch in the operator room. When you disengage the relay, you can control the power supply manually from the Transceiver Rack using the service switch. It is then possible to activate parts of the system (service mode).

The transformers and rectifiers function is to provide 8 Vdc output for the receivers either we have 115 Vac or 230 Vac input.

The LVPU also supplies + 5 V to several boards. See figure below.

→ Refer to the block diagram in figure 59 and the circuit diagram on page 388.

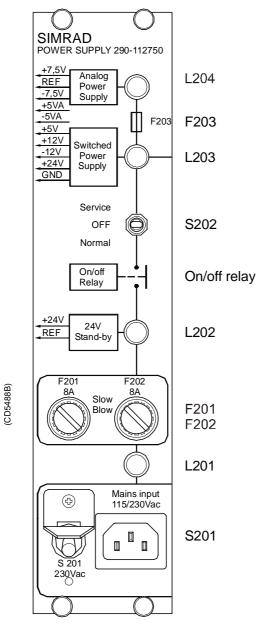


Figure 60 The front panel

Facilities

<u>LEDs</u>

- L201: Indicator for mains input
- L202: Indicator for 24 Vdc stand by mode
- L203: Lit to indicate AC supply to switched and analogue
- L204: Lit to indicate AC supply to analogue power.

Test points

None

<u>Links</u>

None

Switches

- S201: Switch for mains input 115/230 Vac
- S202: Service/Off/Normal switch

Connections

- P1
- P2

<u>Fuses</u>

- F201: Primary fuse
- F202: Primary fuse
- F203: Thermostat fuse inside the torodial transformer

High Voltage Power Unit (HVPU)

Purpose and description

The purpose of the High Voltage Power Unit (HVPU) is to provide the power for the output amplifiers.

The input is to the system is 85 to 265 Vac. The output is 80 Vdc. The output voltage can be reduced to -10 dB (25 Vdc) or -20 dB (8 Vdc). The values can be adjusted.

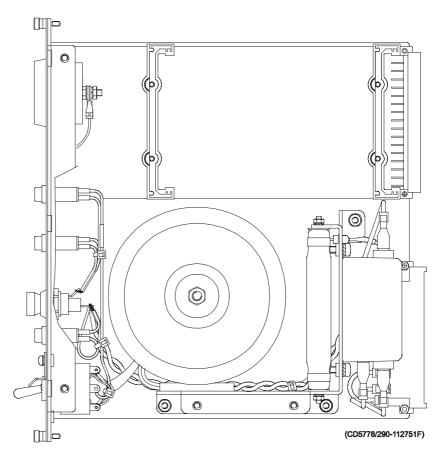


Figure 61 The High Voltage Power Supply

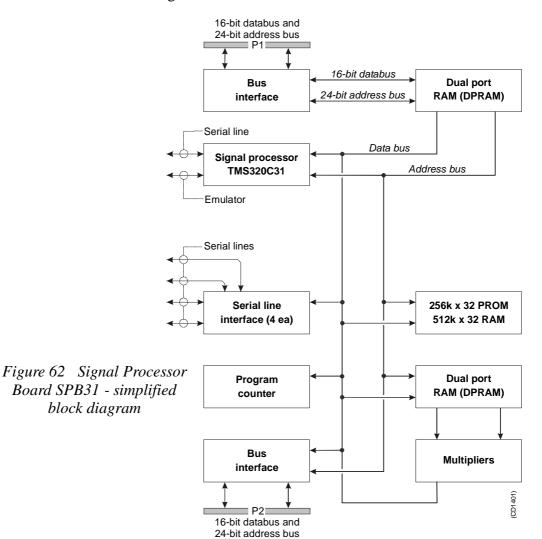
Signal Processor Board (SPB31)

Purpose and description

The Signal Processor Board (SPB31) is designed for high speed beamforming and sonar signal processing. The board design is based on the TMS 320C31 floating point DSP (Digital Signal Processor) from Texas Instruments.

The Signal Processor Board is designed as a "double Europe" standard sized printed circuit board. It is equipped with a number of front mounted LEDs, test points, potentiometers and coax connectors.

The board is used two places in the EM 300 Transceiver Unit; to control the transmission (SPTX) and the reception (SPRX).


The reg.no. for SPB31 Tx is 382-133472 and 382-134469 for SPB31 Rx.

How it works

The main components of the Signal Processor Board are:

- 1 TMS 320C31 Digital Signal Processor
 - Clock frequency 33.33 or 40 MHz
 - 32-bit data bus
 - 24-bit address bus
 - 40/32-bit floating point unit
 - 1 internal serial line
 - 2 pc 32-bit timers
 - 4 interrupt inputs
 - DMA controller
 - Programmable in C and assembly
 - Emulator and symbolic de-bugger available
- **2** 256k x 32 bit PROM.
- **3** 512 x 32 bit SRAM 25 ns
- 4 Complex multiplier.
- 5 4 serial lines RS422/RS232.
- 6 Programmable counter for TX clock, 64 CHTX.
- 7 Dual port interface to P1 bus (Multibus I type).
- 8 Bus interface to P2 bus.
- 9 Control bus for control outputs compatible with SPB29.

The Signal Processor Board works very similar to other microprocessor boards. The TMS 320C31 Digital Signal Processor operates with standard peripheral circuitry such as RAM, PROM (with software) and the interface controllers. Devices for disk drive control are omitted, but Dual Port RAM and a complex multiplier is implemented instead. Refer to the block diagram.

An emulator for the TMS 320C31 processor is developed. It consists of a controller board in a PC and an active pod which is connected to the target board by a 12 pin plug.

Facilities

Unmounted devices

Note that several sockets on the Signal Processor Board may be empty. On EM 300 the Mulitpliers with corresponding DPRAM are not mounted.

<u>Links</u>

A large number of links are implemented on the processor board to allow for several different applications. The links are used as follows:

LK 1	2BI422 to RXDB on U15
LK 2	RXDB2 input to RXDB on U15
LK 3	2AI422 to RXDA on U15
LK 4	RXDA2 input to RXDA on U15
LK 5	CLKIN to U64
LK 6	FSRO and DRO to set frame sync for sercom on U32
LK 7	RDRO to DRO when sercom in U32 is used on RS232
LK 8	Clock to U36
LK 9	RXDA input to RXDA on U63
LK 10	RXDB input to RXDB on U63
LK 11	BI422 input to RXDB on U63
LK 12	AI422 input to RXDA on U63
LK 13	CLQ to P2A25, U60 must not be mounted
LK 14	TXCLK to P2B24, U60 must not be mounted
LK 15	CLI to P2A24, U60 must not be mounted
LK 16	TSTSIG to P2C23, U60 must not be mounted
LK 17	TXEN~ to P2A22, U60 must no be mounted
LK 18	MEM3 to P2C3, LK30 must be OFF
LK 19A	XF0~ as output
LK 19B	XF0 as input
LK 20A	XF0 as output
LK 20B	XF0~ as input
LK 23A	XF1~ as output
LK 23B	XF1 as input
LK 24A	XF1 as output
LK 24B	XF1~ as input
LK 25A	TCLK0~ as output
LK 25B	TCLK0 as input
LK 26A	TCLK0 as output
LK 26B	TCLK0~ as input
LK 27A	TCLK1~ as output
LK 27B	TCLK1 as input
LK 28A	TCKL1 as output
LK 28B	TCLK1~ as input

LK 29	External reset, INIT1, when ON
LK 30	IACK~ to P2C3, LK18 must be OFF
LK 31	U40 to CLKIN on DSP U32

Note that this list is for reference only.

Link applications

When using the Signal Processor Board in the EM 300 Transceiver Unit, the following links must be **ON** (closed):

SPRX:

- LK 4
- LK 5
- LK 8
- LK 9
- LK10
- LK 31

SPTX:

- LK 4
- LK 5
- LK 8
- LK 9
- LK 10
- LK 19 (see below)
- LK 20 (see below)
- LK 23 (see below)
- LK 24 (see below)
- LK 31

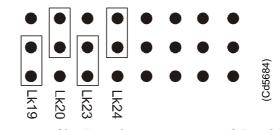
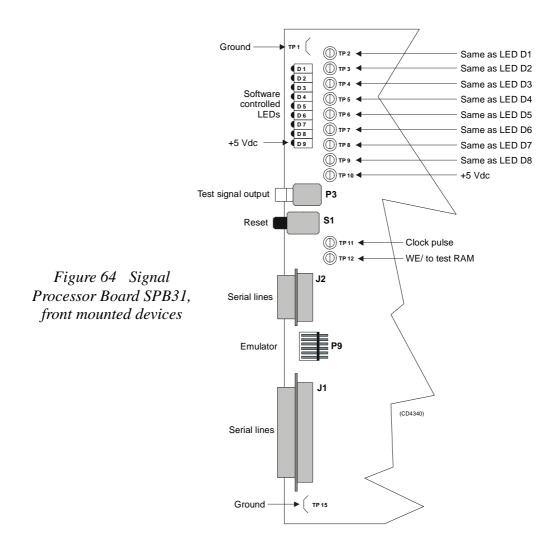


Figure 63 Signal Processor Board SPB31, default settings

<u>LED's</u>


LED's used for SPTX:

- **D1:** program initialized OK
- D2: ready for new command
- D3: transmit active
- D4: BIST active
- D5: not used
- **D6:** test purpose
- **D7:** test purpose
- **D8:** test purpose
- LED's used for SPRX:
- **D1:** program initialized OK
- D2: BIST active
- D3: aquisition of reciever data
- D4: aquisition of reciever data
- **D5:** simulator active
- D6: not used
- D7: not used
- D8: not used

Test points

TP 1: GND

- **TP 2:** General purpose test output no.1
- **TP 3:** General purpose test output no.2
- **TP 4:** General purpose test output no.3
- **TP 5:** General purpose test output no.4
- **TP 6:** General purpose test output no.5
- **TP 7:** General purpose test output no.6
- **TP 8:** General purpose test output no.7
- TP 9: General purpose test output no.8
- **TP 10:** +5 Vdc
- TP 11: Clock pulse, CP, monitor
- **TP 12:** WE~ for testing RAM loading
- **TP 13:** GND
- TP 14: GND
- **TP 15:** GND

Connections

The following connections are made to the Signal Processor Board:

P1	Multibus	
P2	Signal processor external bus	
P3	Test signal output	
J1	Serial lines	
J2	Serial lines	

The trig out puls is active during transmit, and generated by SPRX. This is a TTL level pulse and is active when low.

- \rightarrow The connections are explained in the figure on page 114.
- \rightarrow The Receiver Backplane connections(PXB-P3) are explained on page 149.

Receiver Backplane (RXBP)

Purpose and description

The purpose of the Receiver Backplane is to enable communication between the circuit boards plugged into it, and between these circuit boards and the external circuitry in the cabinet. The RXBP is located behind the middle wired rack in the Transceiver Unit, and holds the following circuit boards:

- Transmitter/Receiver Board 1
- Transmitter/Receiver Board 2
- Transmitter/Receiver Board 3
- Transmitter/Receiver Board 4
- Low Voltage Power Supply
- High Voltage Power Supply
- Signal Processor Board RX
- Capacitor Bank

How it works

There are no active components on this backplane.

Facilities

<u>LEDs</u>

None

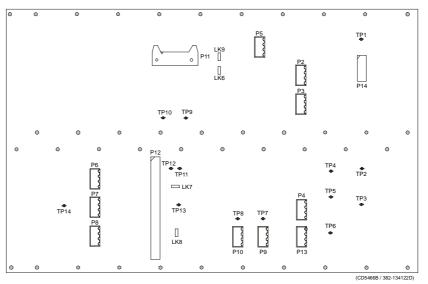


Figure 65 Receiver Backplane, rear side

<u>Links</u>

There are four links on this backplane:

LK6: ON

LK7: ON, HVCLK to HVCKR

LK8: ON, DA0 to DB0

LK9: OFF

Test points

All the test points listed below are only used during development and debugging:

- TP 1: GND
- **TP 2:** Read pulse to the TRB
- TP 3: Filter clk. to PDH's on the TRB
- **TP 4:** Write pulse to the TRB
- **TP 5:** Sample and hold to PDH's on the TRB
- TP 6: Four times demodulater frequency to PDH's on the TRB
- **TP 7:** TX enable to the TRB
- TP 8: GND
- TP 9: GND
- TP 10: Write pulse to fifo on the BSP
- TP 11: Read pulse to 2 port RAM on the SPTX
- TP 12: Write pulse to 2 port RAM on the SPTX
- **TP 13:** Test signal input to PDH's on the TRB

Only links LK7, LK8 and LK9 are applicable for system setup. These are closed as shown in the illustration.

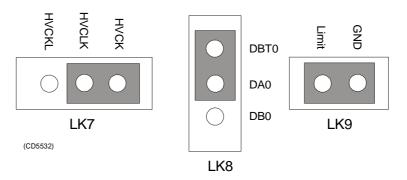


Figure 66 Links applicable

Connections

The sockets on the rear side of the backplane and their connections in the EM 300 Transceiver Unit are described in the tables below.

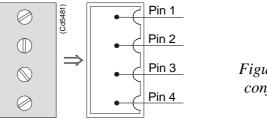


Figure 67 Pin configuration

RXB-P2	Signal	Connection
1	STBY+	Bottom plate-Remote pin 1
2	STBY-	Bottom plate-Remote pin 2
3	ON	Bottom plate-Remote pin 3
4		

RXB-P3	Signal	Connection
1	HEAT	Wall sectTerminal block pin 1
2	STBY-	Wall sectTerminal block pin 2
3	TRIG	Bottom plate-pin 1
4	DGND	Bottom plate-pin 2

RXB-P5	Signal	Connection
1	+12VH	TXB-P3 pin 4
2	HGND	TXB-P3 pin 2
3	HGND	TXB-P3 pin 3
4	+5VH	TXB-P3 pin 1

RXB-P6	Signal	Connection
1	HGND	TXB-P4 pin 1
2	HGND	TXB-P4 pin 2
3	HV	TXB-P4 pin 3
4	HV	TXB-P4 pin 4

RXB-P7	Signal	Connection
1	HGND	TXB-P5 pin 1
2	HGND	TXB-P5 pin 2
3	HV	TXB-P5 pin 3
4	HV	TXB-P5 pin 4

RXB-P8	Signal	Connection
1	HGND	TXB-P6 pin 1
2	HGND	TXB-P6 pin 2
3	HV	TXB-P6 pin 3
4	HV	TXB-P6 pin 4

RXB-P9	Signal	Connection
1	POW1	TX/RX Fan pin 1
2	POW2	TX/RX Fan pin 3
3	POW1	PU Fuse pin 3
4	POW2	PU Fuse pin 4

RXB-P13	Signal	Connection
1	+5 Vdc	TXB-P2 pin 1
2	+5Vdc	TBX-P2 pin 2
3	DGND	TBX-P2 pin 3
4	DGND	TBX-P2 pin 4

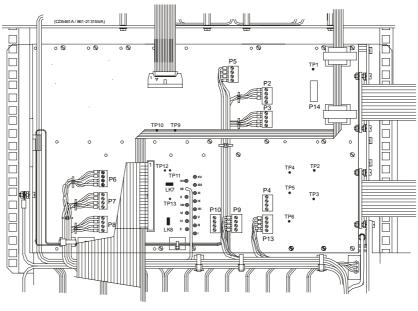


Figure 68 The Receiver Backplane

5.7 Transmitter rack details

Location

The Transmitter Rack is located at the bottom of the Transceiver Unit. It holds one processor board and a number of transmitter boards.

 \rightarrow Refer to the illustration on page 111

The physical number of transmitter boards is defined by the specified system accuracy:

• A 1 degree system has 14 transmitter boards

Circuit boards and modules

64-Channel Transmitter Board (TX64)

Each of these circuit boards holds 64 individual power amplifiers, each controlled by the function controller.

 \rightarrow The circuit board is explained on page 153

Signal Processor Board TX (SPTX)

The processor board is used as a function controller.

 \rightarrow The circuit board is explained on page 142

Backplane (TXBP)

The Transmitter Rack uses a passive backplane.

 \rightarrow The TX Backplane is explained on page 157

64-Channel Transmitter (TX64)

Purpose and description

Once the transmission parameters have been calculated by the Signal Processor Tx (SPTX), each of the transmitter boards is addressed. The data-bus from the SPTX is connected to all the boards, and data for the individual transmitters is loaded into the onboard RAMs as they are addressed from the SPTX. The output from the TX64 RAM bank is connected to the output stages, which are implemented using Kongsberg Maritime-designed amplifier hybrids.

The physical number of TX64 boards fitted to the EM 300 transceiver depends on the chosen system specifications. Thus, up to 14 64-Channel Transmitter (TX64) boards are used.

A one degree transmitter has 864 elements in the transducer and a two degree transmitter 432 elements. Hence a one degree Tx system needs 14 TX64 boards, the last 32 transmitters on the TX64 #14 is not used.

A two degree Tx system needs seven TX64 boards. Here the last 16 transmitters are not used on TX64 board # 7.

How it works

<u>Overview</u>

The TX64 boards are controlled by the Signal Processor TX (SPTX), and the output signals are made available on the front mounted sockets. Flat ribbon cables connect these output pulses to the filters.

The TX64 board is equipped with two large front mounted connectors. Two LED indicators and one test point are located between these connectors. The test point is a ground (GND) connection, while the LEDs monitor the +5 Vdc and +12 Vdc supply voltages.

The TX64 board is equipped with eight onboard fuses. These fuses are located on the High Voltage (HV) supply line, and each fuse protects a group of eight transmitters. Fuse rating is 4 A, physical size is 5 x 20 mm.

The functions of the transmitter may be divided into three parts:

- The power unit (Power & Fuses)
- The digital control unit
- The analogue transmitter driver unit (TX Hybrid)

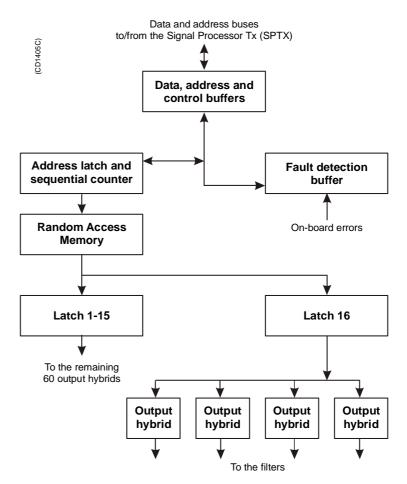


Figure 69 64-Channel Transmitter (TX64) block diagram

Power unit

The power unit includes the three separate supply voltages used and the components around them. The voltages are +12 Vdc, +5 Vdc and High Voltage (HV). The value of the HV depends on the desired output power. Typical range is +8 to +80 Vdc.

Digital control unit

The main function of the digital control unit is to supply the analogue transmitter unit with the correct driving signals.

The shape of the driving signals are temporarily stored in RAMs on the board. The RAMs are filled by the host processor. The drive signals for the output pulses are derived from the pattern. The signals are clocked and latched before they are supplied to the transmitter hybrids. The transmitted pulse is controlled by the address latches and the controller. The transmitted frequency is increased by 64 times, and is then supplied to the CLK input. The TX Enable (TXEN/) input enables the transmitters and controls the transmit pulse length.

Status information such as fuse blown can be read from the fault detect buffer on the data bus.

To lower the sidelobe level, IC U89 is omitted and a piggy back board is inserted. This piggy back board contains a PLD with doubled resolution for transmit beampattern.

Analogue transmitter unit

There are 64 transmitters on the board. Each of these is a thick film hybrid designed by Kongsberg Maritime. There are no frequency dependent components on the board. The transmitters are electrically designed into in groups of eight, each group being protected by a 4 A fuse. The transmitter outputs are brought to the front edge connectors P3 and P4.

Facilities

LEDs

D 9	+5 Vdc
D 10 +	·12 Vdc

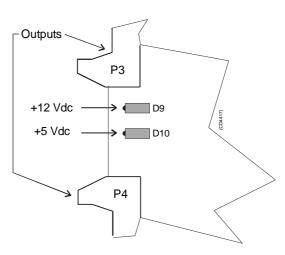


Figure 70 64-Channel Transmitter (TX64) front mounted devices

Test points

TP 1 GND Links

A number of links are implemented on the board to allow for several different applications. The links are used as follows:

LK1 Selects PROM (when ON)
LK2 Selects RAM (when ON)
Link applications
The following links are ON (closed) in this application:
• LK2
Switches
None
<u>Connections</u>
The TX64 is equipped with the following connectors:
P 1 Connections to the external power supply
P 2 Interface to control processor
P 3 Outputs from channels 01-32. Front mounted
P 4 Outputs from channels 33-64. Front mounted
Fuses
F 1 TX group 1, Channels 01-08
F 2 TX group 2, Channels 09-16
F 3 TX group 3, Channels 17-24
F 4 TX group 4, Channels 25-32
F 5 TX group 5, Channels 33-40
F 6 TX group 6, Channels 41-48
F 7 TX group 7, Channels 49-56
F 8
Fuse rating is 4 A. Physical fuse size is 4 x 20 mm.

Oscilloscope check points

- The Clock (CLK) is input on pin P2 B24, and connected to buffer U90, pin 4. The clock frequency varies with the transmission frequency, and will be 64 times this. Frequency alterations during one transmission are achieved by changing the clock frequency.
- The TX Enable (TXEN/) is input on pin P2 A22, and connected to buffer U90, pin 2. The TXEN/ pulse is the transmit trigger, and the length of the TXEN is also the length of the transmitted pulse. For EM 300 the TX frequency is from 30 to 34 kHz.

Transmitter Backplane (TXBP)

Purpose and description

The purpose of the transmitter Backplane is to enable communication between the circuit boards plugged into it, and between these circuit boards and the external circuitry in the cabinet. The TXBP is located behind the bottom wired rack in the Transceiver Unit, and holds the following circuit boards:

- 64-channel Transmitter Board (TX64)
- Signal Processor Board TX (SPB31)

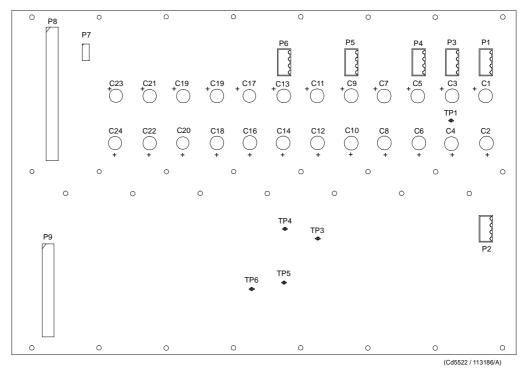


Figure 71 Transmitter Backplane, rear side

How it works

There are no active components on this backplane.

Facilities

<u>LEDs</u>

None

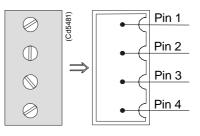
Test points

The following testpoints are only used during development and debugging.

- TP 1: DGND
- TP 2: DGND
- TP 3: SMEM/ Active low when data is read from TX64

TP 4: DMEM/ Active low when data is written to TX64 **TP 5:** DGND

TP 6: TXE/ Active low when transmit is ongoing.


<u>Links</u>

None.

Connections

The sockets on the rear side of the backplane and their connections in the EM 300 Transceiver Unit are described in the tables below.

Figure 72 Pin configuration

TXB-P1	Signal	Connection
1	GND	PU power supply
2	GND	PU power supply
3	+12 Vdc	PU power supply
4	+12 Vdc	PU power supply

TXB-P2	Signal	Connection
1	+5 Vdc	RXB-P13 pin 1
2	+5 Vdc	RXB-P13 pin 2
3	DGND	RXB-P13 pin 3
4	DGND	RXB-P13 pin 4

TXB-P3	Signal	Connection
1	+5 VH	RXB-P5 pin 4
2	HGND	RXB-P5 pin 2
3	HGND	RXB-P5 pin 3
4	+12 VH	RXB-P5 pin 1

TXB-P4	Signal	Connection
1	HGND	RXB-P6 pin 1
2	HGND	RXB-P6 pin 2
3	HGND	RXB-P6 pin 3
4	HGND	RXB-P6 pin 4

TXB-P5	Signal	Connection
1	HGND	RXB-P7 pin 1
2	HGND	RXB-P7 pin 2
3	HGND	RXB-P7 pin 3
4	HGND	RXB-P7 pin 4

TXB-P6	Signal	Connection
1	HGND	RXB-P8 pin 1
2	HGND	RXB-P8 pin 2
3	HGND	RXB-P8 pin 3
4	HGND	RXB-P8 pin 4

The bleeder is mounted on the Processing Unit power supply cover.

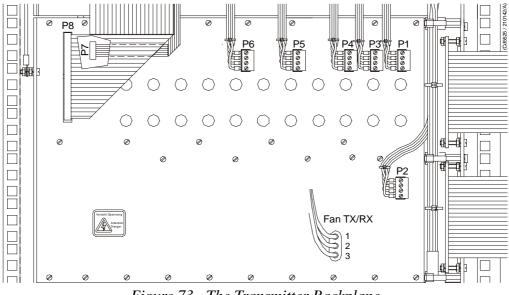


Figure 73 The Transmitter Backplane

Blank page

6 TRANSCEIVER UNIT 125-218182

6.1 Description and main functions

Overview

The EM 300 Transceiver Unit performs the reception, data acquisition, received signal processing and transmission for the multibeam echo sounder system. The cabinet holds three wired racks containing the system circuit boards.

- The top **Processing Rack** holds the complete Processing Unit with its own power supply. This unit provides data acquisition, signal processing and function control.
- The middle **Receiver Rack** holds the receiver boards, a controller, two power supplies and a large capacitor bank.
- The bottom **Transmitter Rack** holds the transmitter circuitry and a dedicated controller.

Three different versions of the Transciever Unit have been delivered. The registration number of the Transceiver Unit will determine which version you have:

125-210131, more information on page 41.

125-211293, more information on page 101.

125-218182, more information on page 161.

This number is to be found on the Transceiver Unit chassis.

All versions are described in this manual. Please check your Transceiver Unit to find out which version you have.

6.2 Transceiver Unit 125-218182

This chapter provides the following information:

- \rightarrow Circuit board descriptions, page 177.
- \rightarrow Description and main functions, page 161.
- \rightarrow Transceiver Unit outline, page 163.
- \rightarrow Transceiver Unit racks, page 167.
- \rightarrow Theory of operation, page 172.
- → Processing rack, details, page 176
- \rightarrow Receiver rack, details, page 188.
- → Transmitter rack, details, page 206
- \rightarrow Circuit board descriptions, page 177.

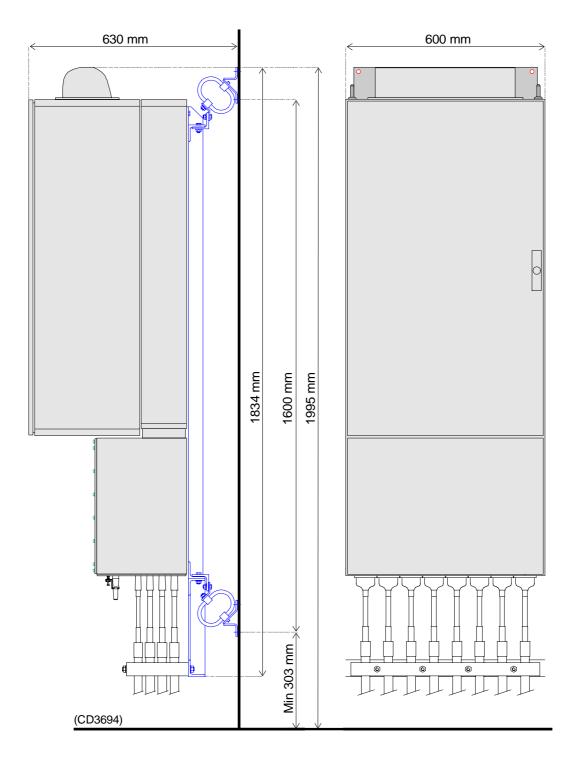


Figure 74 Standard EM 300 Transceiver Unit - Outline dimensions

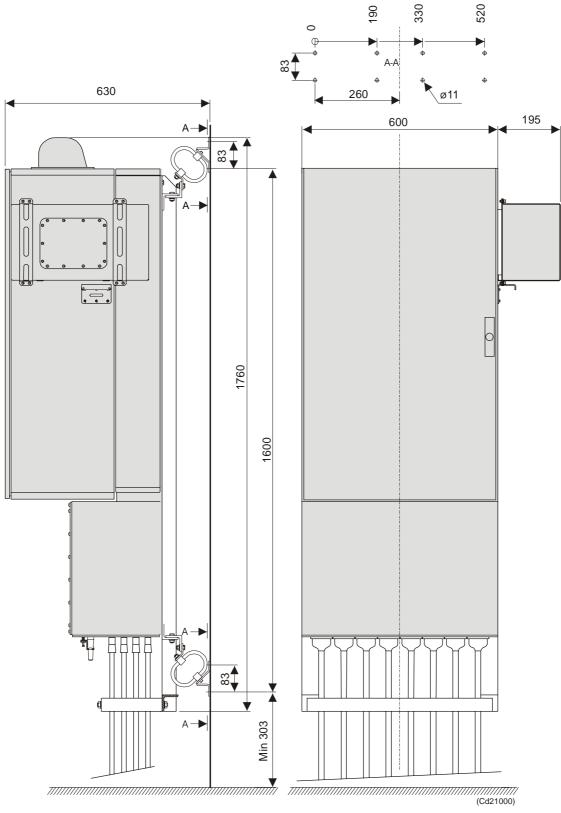


Figure 75 EM 300 Transceiver Unit with the optional Raw Data Logger - Outline dimensions

→ Please refer to the Raw Data Logger Instruction Manual for maore information about installation with Raw Data Logger.

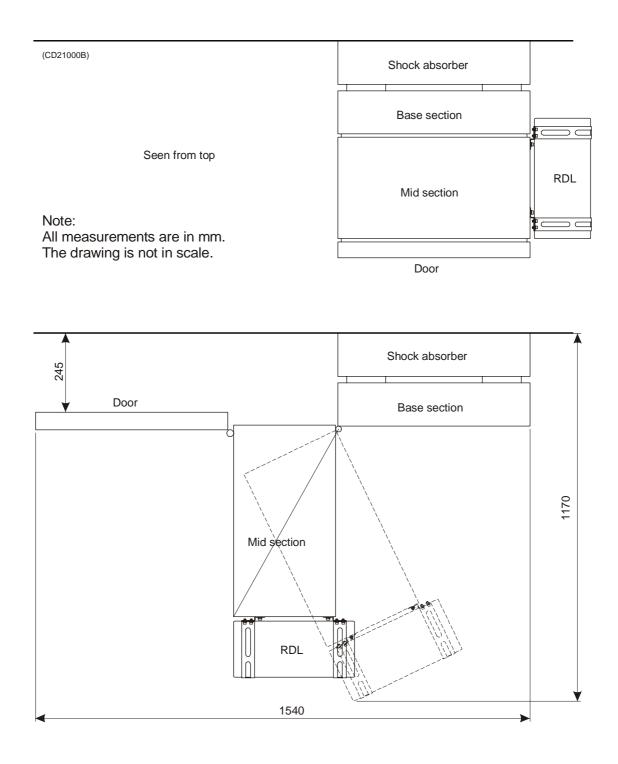


Figure 76 Transceiver Unit with Raw Data Logger, seen from above.

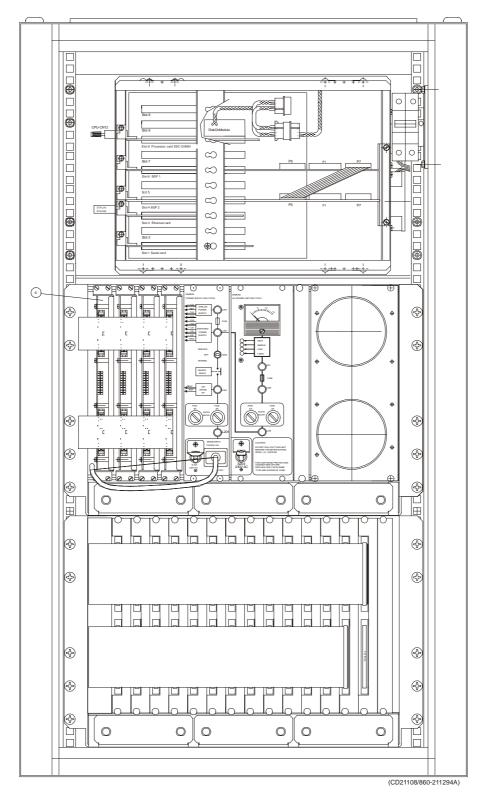


Figure 77 Transceiver Unit - wired

The Processing Rack

The Processing Rack is located at the top of the Transceiver Unit. It holds a chassis with several circuit boards, fans and a power supply. A ground strap and a circuit breaker for the power supply is also available, but these are mounted on the main rack, and not on the shelf.

The Processing Rack holds the following circuit boards and modules:

- 4-Ports Serial Line board
- Beamformer & Signal Processor (BSP1 and BSP2)
- Control Processing Unit (CPU) board with ethernet connection
- DiskOnModule flash disk (mounted on the Control Processing Unit board)
- Power supplies
- Two fans
- Motherboard
- → A more detailed description of all the circuit boards and modules is found on page 175.

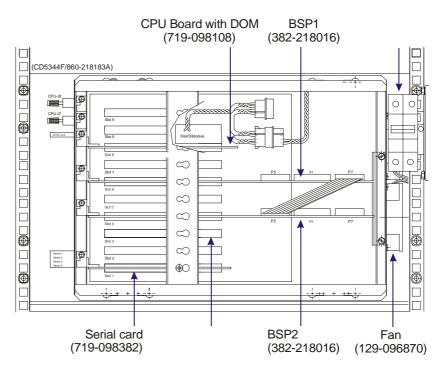


Figure 78 Processing Rack, circuit board locations

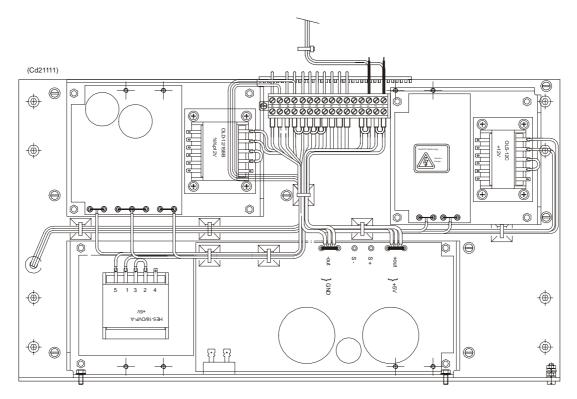
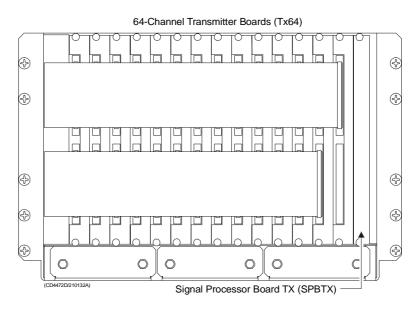
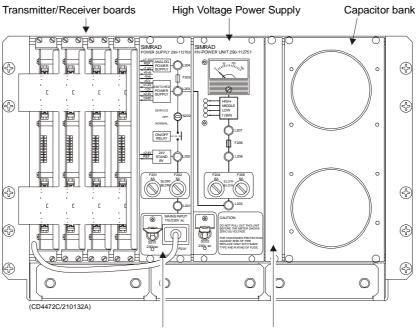


Figure 79 Power supplies on the rear panel

The Transmitter Rack

The Transmitter Rack is located at the bottom of the the Transceiver Unit. It holds one processor board and a number of transmitters.




Figure 80 The Transmitter Rack

The Transmitter Rack holds the following circuit boards and modules (from left):

- 64-Channel Transmitter Board (TX64)
- Signal Processor Board TX (SPTX)
- \rightarrow A more detailed description is found on page 205

The Receiver Rack

The Receiver Rack is located at the middle of the Transceiver Unit. It holds several circuit boards, power supplies and a capacitor bank. All the units are accessed from the front of the rack.

Low Voltage Power Supply Signal Processor Board RX (SPBRX)

Figure 81 The Receiver Rack

The Receiver Rack holds the following circuit boards and modules (from left):

- TRB 32/Receiver board (max 4)
- Low Voltage Power Supply
- High Voltage Power Supply
- Signal Processor Board RX (SPRX)
- Capacitor bank
- \rightarrow A more detailed description is found on page 187.

6.3 Theory of operation

Overview

This chapter presents a functional description of the Transceiver Unit.

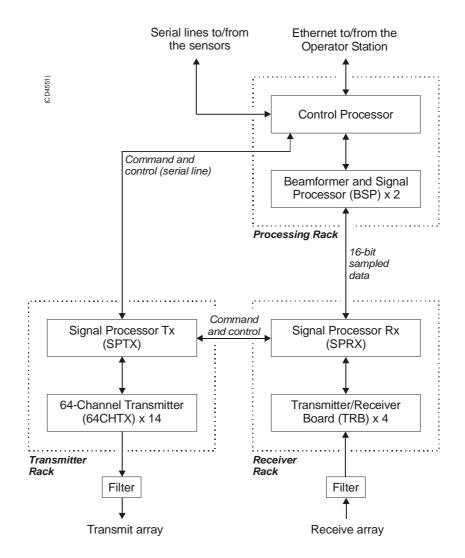


Figure 82 Transceiver Unit, simplified block diagram

Simplified block diagram

The simplified block diagram for the Transceiver Unit presents the following main functions:

- Transmission
- Reception
- Processing

The various parameter settings made on the Operator Station are sent to the Control Processor in the Processing Rack. The information (roll, pitch, pulse length etc.) is interpreted, and passed on to the Signal Processor TX (SPTX), which is the "master" processor in the TX/RX system.

After the transmission, the Signal Processor RX (SPRX) is instructed to receive the samples for all the receiver staves and pass them on to the two Beamformer and Signal Processors (SBP's) in the Processing Rack.

Control functions

The control functions in the Transceiver Unit are mainly handled by the three processor boards, but additional peripheral boards are also used. The majority of the control boards are contained in the Processing Unit.

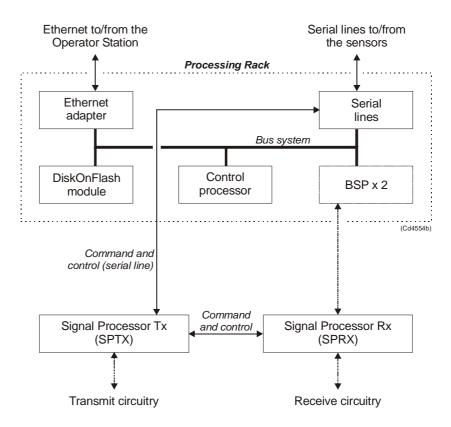


Figure 83 The control functions

The Control Processor in the Processing Unit is not equipped with interface capabilities, and thus requires external boards to handle ethernet and serial lines interface. It also relies on an external memory board for the software contained in the ROM device. All the peripheral boards used here are commercial. Newer Control Processor Units (CPU) handles ethernet interface and have a DiskOnModule installed (containing software). This kind of CPU also relies on an external board to handle serial line interface.

One serial line is used to interface the command and control signals to and from the TX/RX controllers. The Signal Processor TX is the "master".

External synchronisation

The serial line RTS and CTS signals are used for external synchronisation. In addition a trig out signal is issued by the TRU.

Levels: RTS, CTS: H=high= +3 to +15 V L=low= -3 to -15 V Trig out: TTL Level

Outputs from TRU:

Trig out=1	TX is off(<u>H</u> igh TTL level)
Trig out=0	TX is active(<u>L</u> ow TTL level)

RTS=HTRU is ready for a new pingRTS=LTRU is not ready

RTS is pin 7 on the CPU card D connector. (Pin 6 on EM120 and EM300 "remote" plug).

Inputs to TRU:

CTS=H Ping command CTS=L Wait

CTS is pin 8 on the CPU card D connector. (Pin 7 on the EM120 and EM300 "remote" plug). The CTS pulse length must be minimum 30 milliseconds.

Gnd is pin 5 on the CPU card D connector. (Pin 8 on EM120 and EM300 "remote" plug).

Typica	sequence:	

CTS		
	тх	
	Command	
RTS		
	(TRU ready) (TRU busy)	(TRU busy)
Trig out		
ing out	TX	
	Pulse	
	i uise	

Note

When the TRU is ready for a new ping, RTS is set to H. When the external device is ready for a new ping, CTS shall be changed to H. The TRU will then start a ping, change RTS to L (busy), and the Trig out will be low during the transmit pulse. After the Trig out is received, the external device should turn CTS to L. (Or at least keep it high for 35 milliseconds).

When the received period is finished and the TRU is ready for a new ping, the RTS will be changed to H, and the TRU will wait for new trigger (a high level on CTS).

If CTS is H all the time, or if external sync in the installation menu is switched off, the TRU will ping at its maximum rate.

6.4 Processing rack details

Location

The Processing Rack is located at the top of the the Transceiver Unit. It holds a chassis with several circuit boards, fans and a power supply. A ground strap and a circuit breaker for the power supply is also available, but these are mounted on the main rack, and not on the shelf.

Circuit boards and modules

4-ports Serial Line Board

This is a commercial circuit board. It provides the Transceiver Unit with four serial lines.

 \rightarrow The interface board, CI-104JS, is explained on page 177.

Beamformer & Signal Processor (BSP)

These are the main processing boards in the Transceiver Unit.

 \rightarrow The circuit board is explained on page 179.

Control Processor Unit board (CPU)

This processor board acts as a function controller. It holds a DiskOnModule flash disk.

 \rightarrow The circuit board, VIPer, is explained on page 182.

DiskOnModule (DOM)

This flash disk is mounted on the Control Processor Unit board.

Power supply

The Processing Rack contains three analogue power supplies located behind the circuit board.

 \rightarrow The power supplies are explained on page 183.

Motherboard

This is a commercial circuit board.

 \rightarrow The circuit board is explained on page 186

Fan

The fans are located on the right side of the Processing Rack, when seen from the front.

6.5 Circuit board descriptions

Overview

This chapter describes all the circuit boards and modules in the EM 300 Transceiver Unit. A functional description with a block diagram is provided, as well as the facilities provided for maintenance.

Remember that all versions of the Transceiver Unit is in this manual. Different boards and power supplies are therefore described for the EM 300 system. Check the reg.no. on your Transceiver Unit to find out which version you have.

Serial Line Board (CI-104JS)

If more information is needed, refer to webpage *www.moxa.com*.

Purpose and description

This is a commercial circuit board designed and produced by Moxa Technologies. It is located in the Processing Unit.

The board is a cabling space saver that features a built-in RJ45 bracket to save cable layout space and reduce cost.

It has surge protection and ISA bus.

A software setup has been done at Kongsberg Maritime to configure the board.

How it works

The Smartio CI-104JS Series provides 4 RJ-45 sockets for connection, which save a lot of cable space.

Surge Protection

To prevent the board from damage caused by lighting or high potential voltage, TVSS (Transient Voltage Surge Suppressor) technology is introduced in Smartio CI-104JS to protect the board. This is critical to harsh environment such as factory.

Specifications

Connector type	RJ-45
Bus	ISA (16 bit)
Serial	RS-232
Ports (interface)	4
Power requirements	83 mA max. (-12V), 57 mA max. (+12V), 100 mA max. (+5V)
Operating temperature	0° - 55°C
Dimesions	157 x 83 mm (width x depth)
Surge protection	25 KV ESD 2 KV EFT

Note

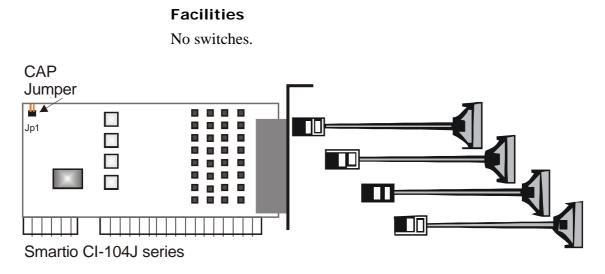


Figure 84 Illustration of the Serial Line Board.

Beamformer & Signal Processor (BSP)

Purpose and description

The Beamforming & Signal Processing (BSP) board is a multi digital signal processor (DSP) board. It is designed to perform the beamforming and signal processing in sonars and multibeam echo sounders. It is controlled from a host processor.

The processing power in the Beamforming & Signal Processing (BSP) board is based on eight Texas TMS320C50 fixed point digital signal processors working in parallel while beamforming the data. Next, there are four Texas TMS320C44 floating point digital signal processors interconnected to use both parallel and sequential processing of the beamformed data from the fixed point processors.

The Beamforming & Signal Processing (BSP) board is a single slot full length standard ISA format circuit board made to fit into a personal computer.

How it works

The Beamforming & Signal Processing (BSP) board contains four main sections:

- Sonar Input Data
- Beamforming
- Signal Processing
- Host Interface

The **Sonar Input Data** interfaces an 18-bit wide and 1k deep Input FIFO (First-In-First-Out) register. This input FIFO holds the data received from the transducer array through the receiver processing circuitry. A dedicated digital signal processor reads the input FIFO.

There are two identical **Beamforming** digital signal processing branches. Each consists of four digital signal processors and a 16-bit wide and 8k deep dual port memory (DPRAM). The two branches are exchanging data by means of this DPRAM.

The **Signal Processing** section comprises three digital signal processors dedicated to do further processing of the beamformed data.

The **Host Interface** function is maintained by the master processor on the Beamforming & Signal Processing (BSP) board. It exchanges data with the host processor via a 16-bit wide and 8k deep dual port memory (DPRAM) on the ISA bus.

Facilities

<u>LEDs</u>

D1 (LED): C44 D

Test points

There is one test point for each C50 digital signal processor (eight total). These testpoints are all connected to the XF/ signal which is active while that particular C50 access the shared DPRAM.

There is also one test point for each C44 digital signal processor (four total). These test points are connected to the IIOF2/ signal, which is a general purpose I/O port bit that can be controlled by the software.

The C44-D testpoint is also connected to a light emitting diode (D1) for visual observation. The LED will be activated during each ping.

TP1	C50 E0
TP2	C50 E1
TP3	C50 E2
TP4	C50 E3
TP5	C50 F0
TP6	C50 F1
TP7	C50 F2
TP8	C50 F3
TP11	C44 A
TP12	C44 B
TP13	C44 C
TP14 (& D1)	C44 D

The testpoints will be active when the corresponding processor is working.

<u>Links</u>

A number of links are implemented on the board to allow for several different applications. Links LK1, LK2 and LK3 are used to identify the board as one out of maximum eight boards in one system.

LK3	LK2	LK1	BSP ID
0	0	0	BSP 0
0	0	1	BSP 1
0	1	0	BSP 2
0	1	1	BSP 3
1	0	0	BSP 4
1	0	1	BSP 5
1	1	0	BSP 6
1	1	1	BSP 7

Link applications

The following links are ON (closed) in this application:

- BSP0 is the master processor (no links).
- BSP1 is the slave processor (link LK1).

Switches

There are no switches on the board.

Connections

The Beamforming & Signal Processing (BSP) holds the following plugs and sockets:

P1	Sonar input data
P2	ISA bus component
P3	Emulator
P4	Direct memory access
P5	External communication port
P6	Test access port
P7	External communication port

The P1, sonar input data, is connected to SPRX via a flat cable plug connected to the Reciever Backplane, plug P11.

VIPer 629 Control Processor Board

Purpose and description

This is a commercial circuit board designed and produced by Kontron.

 \rightarrow *Refer to webpage www.kontron.com for more information.*

A DiskOnModule (DOM) or a DiskOnFlash (DOF) module is mounted on this board. This module contains the software needed for this CPU board, and for the BSP boards. It can be upgraded from the release CD.

The LAN / Ethernet to and from the Operator Station is connected here.

Figure 85 VIPer 629

Processing Unit Power Supply

Note

The power supply distributes voltages that can result in personal injuries. Please take necessary precautions.

Purpose and description

The HE5-18 power supply is feeding +5V to the Processing Rack. The new Control Processing Unit (CPU) board, called VIPer, requires more 5V than other CPU boards.

The OLD-12/15BB power supply is feeding ± 12 Vdc to all the boards and the two fans in the Processing Rack.

The OLS-12C power supply is feeding +12Vdc to the transmitter backplane (TXPB).

The power supplies are located on the rear side of the Processing Rack, hidden behind a cover plate.

How it works

→ Refer to the block diagram in figure 86, with 110 Vac, and figure 87, with 230 Vac.

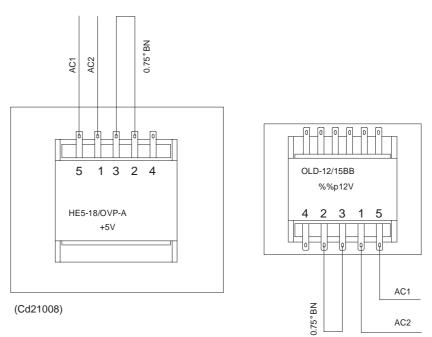
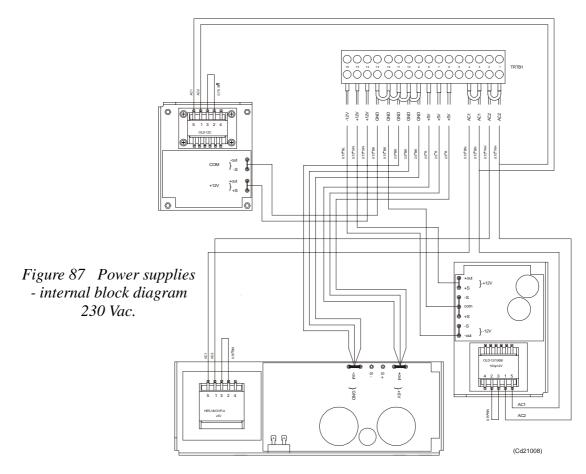



Figure 86 Power supplies - internal block diagram (110 Vac).

Input voltage	Link	Input
110 Vac + 10%, - 13%		1 - 5
120 Vac + 10%, - 13%	1 - 3 and 2 - 4	1 - 4
230 Vac + 10%, - 13%	2 - 3	1 - 5

Facilities

Connections

Pins 2, 4, 5 and 9 are not in use.

Pin	Signal	Connection
1	AC2	Circuit breaker
3	AC1	Circuit breaker
6	+5 Vdc	PU backplane-P9 pin 4
7	+5 Vdc	PU backplane-P9 pin 5
8	+5 Vdc	PU backplane-P9 pin 6
10	GND	PU backplane-P8 pin 5
10	GND	TX backplane-P1 pin 1
11	GND	PU backplane-P8 pin 6
11	GND	TX backplane-P1 pin 2
12	GND	PU backplane-P9 pin 1
13	GND	PU backplane-P9 pin 2
13	GND	PU backplane-P9 pin 2
14	+12 Vdc	TX backplane-P1 pin 3
15	+12 Vdc	Fans in PU and
		PU backplane - P8 pin 3
15	+12 Vdc	Fans in PU
16	-12 Vdc	PU Backplane-P8 pin 4

Motherboard

How it works

This is a passive backplane with standard ISA-bus.

Facilities

<u>LEDs</u>

The board has four LEDs:

- + 5V
- - 5V
- + 12V
- - 12V

- 5V is not used and is not lit. The three others should be lit at all times.

Test points

None

<u>Links</u>

None

Connections

+ 5V, + 12V and - 12V.

6.6 Receiver rack details

Location

The Receiver Rack is located at the middle of the the Transceiver Unit. It holds several circuit boards, power supplies and a capacitor bank.

 \rightarrow Refer to the illustration on page 170.

Circuit boards and modules

Transmitter/Receiver board

These four boards hold the amplifiers for all the individual receive channels. (The boards may also provide power amplification of the transmitted signal, but as this function is not used in the EM 300, these components have been omitted).

 \rightarrow The circuit board is explained on page 188.

Low Voltage Power Supply

This is a commercial linear power supply mounted on a chassis for easy replacement. It also contains linear supplies for the TRB's.

 \rightarrow The Low Voltage Power Supply is explained on page 191.

High Voltage Power Supply

This is a switching power supply. It provides the high output voltage for the transmitters, and uses the Capacitor bank to store the energy between the pings.

→ The High Voltage Power Supply HVPU is explained on page 194.

Signal Processor Board RX (SPRX)

The processor board is used as a function controller. This is a common circuit board whose name is SPB31, and it is both used in the Transmitter Rack and the Receiver Rack.

 \rightarrow The Signal Processor Board is explained on page 195.

Backplane (RXBP)

The Receiver Rack uses a passive backplane. All connections to the circuit boards (except transmission signals) are made on this backplane.

Capacitor bank

This unit stores transmission energy temporarily.

Transmitter/Receiver Board (TRB)

Purpose and description

The purpose of the Transmitter/Receiver Board (TRB) is to provide amplification of the signals received from the Preamplifier Unit. The board has 32 individual channels. The board is designed to provide transmission as well, but these components are not mounted on the circuit boards used in the EM 300 Transceiver Unit

The TRB is fastened to a combined strengthening plate and heat sink which covers the entire component side of the board and also forms a "front panel" to the board. The board is located in tracks within the Transceiver Unit to ensure correct location, and is held in position by four screws.

The TRB has two 34-pin connectors on its front edge which carry the signals from the Preamplifier Unit.

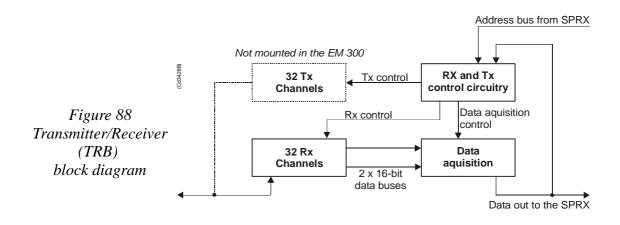
A one degree system needs four Transmitter/Receiver (TRB) boards. This means that all 128 channels are used.

A two degree system needs two Transmitter/Receiver (TRB) boards, while a four degree system only have one.

How it works

Transmission

The TRB contains a control interface that controls the 32 transmitters on the board.


The transmitters can be controlled individually to enable beamforming of the transmitted pulse.

Reception

The TRB receives signals from 32 transducer elements. The signals are individually amplified, time-varied-gain regulated, demodulated, and analogue-to-digital converted. The converted signals are then output from the board and sent to the BSP's for further processing.

Dimensions (Width x Heigh x Depth)	220 x 233.35 x 0.32 mm
Analogue input/output	32 channels, 60W, + T/R switch
Connectors	Two 96-pin euro on back edge of board Two 34-pin flat cables on front edge
Analogue to digital	12-bits resolution I/Q simultaneously converted to 32-bit latched bus
Power requirements	+ 5 Vdc, 8 Vdc, + 24 Vdc

Technical details

Facilities

<u>Test points</u>

The test points listed below are available to assist the maintenance engineer. They are located on the front edge of the board between the two connectors, in front of the corresponding LED.

AVCC analogue voltage + 5 V
AVDD analogue voltage NA
VCC digital voltage + 5 V
AVEE analogue voltage
HV1 high voltage transmitter + 8 - + 80 Vdc
HV2 high voltage transmitter NA
HV3 high voltage transmitter NA
HV4 high voltage transmitter NA
TX transmitter indicator NA

The testpoints marked with NA are not used on EM 300.

<u>Links</u>

The TRB holds no links that can be set by the maintenance engineer.

Switches

The TRB holds no switches that can be adjusted by the maintenance engineer.

<u>LEDs</u>

The TRB holds ten red LEDs on its front edge, mounted in a vertical line between the connectors. When these LEDs are lit, they indicate the presence of the corresponding voltage levels.

Connectors

The TRB carries four connectors, two located at each end of the board. P1 is a 96-pin, male right-angled euro-connector, located on the rear edge of the board, carrying power. P2 is a 96-pin, male, right-angled euro-connector, also located on the rear edge of the board, carrying power and digital control signals. P3 and P4 are 34-pin, male, right-angled connectors with ejector/latch, located on the front edge of the board. Each connector carries 16 input/outputs to the transducer/preamplifier.

Low Voltage Power Unit (LVPU)

Purpose and description

The purpose of the Low Voltage Power Unit (LVPU) is to supply power to all the modules in the Transceiver Unit, except the high voltage power for the transmission, power to PU and ± 12 Vdc.

The Low Voltage Power Unit is located between the Transmitter/Receiver Boards and the High Voltage Power Supply in the Receiver Rack. The power supply is a plug-in module. It has two front mounted fuses, one service switch, and one switch to select 115 or 230 Vac mains input.

Switched power supply
MAP55-4001Mains transformer Ulveco N14034-TD
Used in analogue power supply

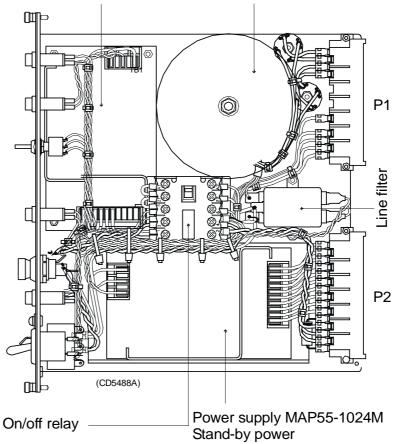
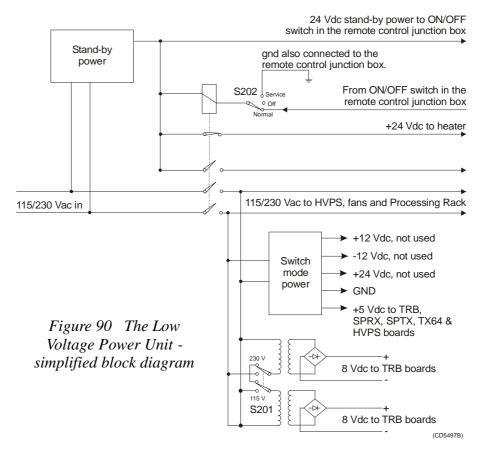
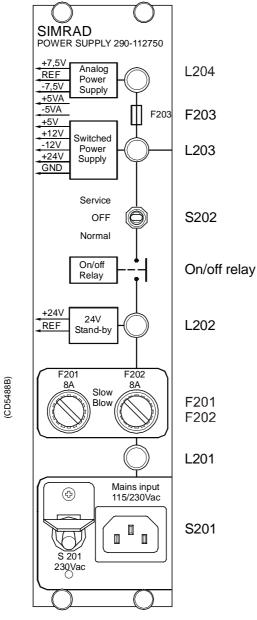


Figure 89 The Low Voltage Power Supply

How it works


The power unit contains two separate power supplies. The output of the stand-by power supply is 24 Vdc.


The power unit has a service switch. When this is set to normal, the power supply is controlled by the on/off relay. This relay is remote controlled from a switch in the operator room. When you disengage the relay, you can control the power supply manually from the Transceiver Rack using the service switch. It is then possible to activate parts of the system (service mode).

The transformers and rectifiers function is to provide 8 Vdc output for the receivers either we have 115 Vac or 230 Vac input.

The LVPU also supplies + 5 V to several boards. See figure below.

→ Refer to the block diagram in figure 90 and the circuit diagram on page 387.

Facilities

<u>LEDs</u>

- L201: Indicator for mains input
- L202: Indicator for 24 Vdc stand by mode
- L203: Lit to indicate AC supply to switched and analogue
- L204: Lit to indicate AC supply to analogue power.

Test points

None

<u>Links</u>

None

Switches

- S201: Switch for mains input 115/230 Vac
- S202: Service/Off/Normal switch

Connections

- P1
- P2

<u>Fuses</u>

- F201: Primary fuse
- F202: Primary fuse
- F203: Thermostat fuse inside the torodial transformer

Figure 91 The front panel

High Voltage Power Unit (HVPU)

Purpose and description

The purpose of the High Voltage Power Unit (HVPU) is to provide the power for the output amplifiers.

The input is to the system is 85 to 265 Vac. The output is 80 Vdc. The output voltage can be reduced to -10 dB (25 Vdc) or -20dB (8 Vdc). The values can be adjusted.

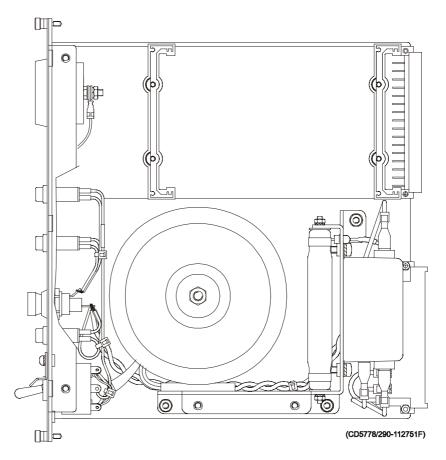


Figure 92 The High Voltage Power Supply

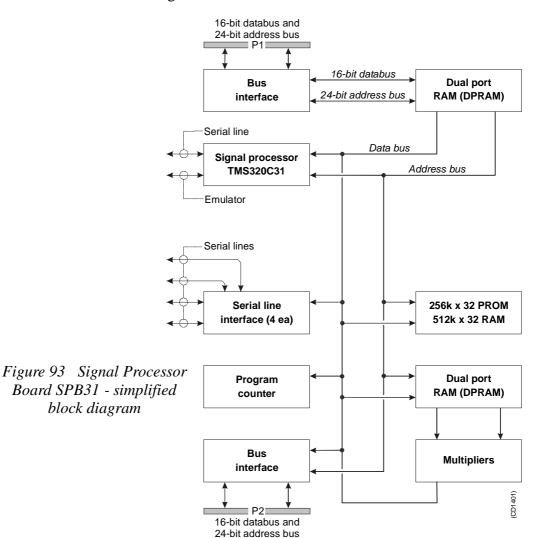
Signal Processor Board (SPB31)

Purpose and description

The Signal Processor Board (SPB31) is designed for high speed beamforming and sonar signal processing. The board design is based on the TMS 320C31 floating point DSP (Digital Signal Processor) from Texas Instruments.

The Signal Processor Board is designed as a "double Europe" standard sized printed circuit board. It is equipped with a number of front mounted LEDs, test points, potentiometers and coax connectors.

The board is used two places in the EM 300 Transceiver Unit; to control the transmission (SPTX) and the reception (SPRX).


The reg.no. for SPB31 Tx is 382-133472 and 382-134469 for SPB31 Rx.

How it works

The main components of the Signal Processor Board are:

- 1 TMS 320C31 Digital Signal Processor
 - Clock frequency 33.33 or 40 MHz
 - 32-bit data bus
 - 24-bit address bus
 - 40/32-bit floating point unit
 - 1 internal serial line
 - 2 pc 32-bit timers
 - 4 interrupt inputs
 - DMA controller
 - Programmable in C and assembly
 - Emulator and symbolic de-bugger available
- **2** 256k x 32 bit PROM.
- **3** 512 x 32 bit SRAM 25 ns
- 4 Complex multiplier.
- 5 4 serial lines RS422/RS232.
- 6 Programmable counter for TX clock, 64 CHTX.
- 7 Dual port interface to P1 bus (Multibus I type).
- 8 Bus interface to P2 bus.
- 9 Control bus for control outputs compatible with SPB29.

The Signal Processor Board works very similar to other microprocessor boards. The TMS 320C31 Digital Signal Processor operates with standard peripheral circuitry such as RAM, PROM (with software) and the interface controllers. Devices for disk drive control are omitted, but Dual Port RAM and a complex multiplier is implemented instead. Refer to the block diagram.

An emulator for the TMS 320C31 processor is developed. It consists of a controller board in a PC and an active pod which is connected to the target board by a 12 pin plug.

Facilities

Unmounted devices

Note that several sockets on the Signal Processor Board may be empty. On EM 300 the Mulitpliers with corresponding DPRAM are not mounted.

<u>Links</u>

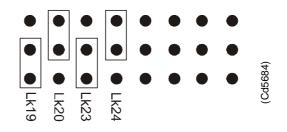
A large number of links are implemented on the processor board to allow for several different applications. The links are used as follows:

LK 1	2BI422 to RXDB on U15
LK 2	RXDB2 input to RXDB on U15
LK 3	2AI422 to RXDA on U15
LK 4	RXDA2 input to RXDA on U15
LK 5	CLKIN to U64
LK 6	FSRO and DRO to set frame sync for sercom on U32
LK 7	RDRO to DRO when sercom in U32 is used on RS232
LK 8	Clock to U36
LK 9	RXDA input to RXDA on U63
LK 10	RXDB input to RXDB on U63
LK 11	BI422 input to RXDB on U63
LK 12	AI422 input to RXDA on U63
LK 13	CLQ to P2A25, U60 must not be mounted
LK 14	TXCLK to P2B24, U60 must not be mounted
LK 15	CLI to P2A24, U60 must not be mounted
LK 16	TSTSIG to P2C23, U60 must not be mounted
LK 17	TXEN~ to P2A22, U60 must no be mounted
LK 18	MEM3 to P2C3, LK30 must be OFF
LK 19A	XF0~ as output
LK 19B	XF0 as input
LK 20A	XF0 as output
LK 20B	XF0~ as input
LK 23A	XF1~ as output
LK 23B	XF1 as input
LK 24A	XF1 as output
LK 24B	XF1~ as input
LK 25A	TCLK0~ as output
LK 25B	TCLK0 as input
LK 26A	TCLK0 as output
LK 26B	TCLK0~ as input
LK 27A	TCLK1~ as output
LK 27B	TCLK1 as input
LK 28A	TCKL1 as output
LK 28B	TCLK1~ as input

LK 29	External reset, INIT1, when ON
LK 30	IACK~ to P2C3, LK18 must be OFF
LK 31	U40 to CLKIN on DSP U32

Note that this list is for reference only.

Link applications

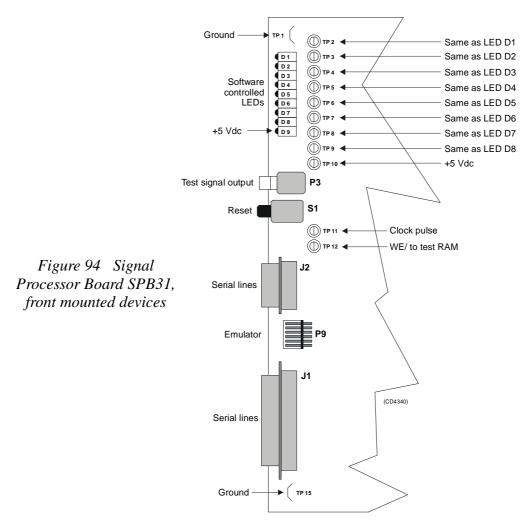

When using the Signal Processor Board in the EM 300 Transceiver Unit, the following links must be **ON** (closed): SPRX:

• LK 4

- LK 5
- LK 8
- LK 9
- LK10
- LK 31

SPTX:

- LK 4
- LK 5
- LK 8
- LK 9
- LK 10
- LK 19 (see below)
- LK 20 (see below)
- LK 23 (see below)
- LK 24 (see below)
- LK 31



<u>LED's</u>

LED's used for SPTX:

- **D1:** program initialized OK
- **D2:** ready for new command
- D3: transmit active
- D4: BIST active
- D5: not used

- **D6:** test purpose
- **D7:** test purpose
- LED's used for SPRX:
- **D1:** program initialized OK
- **D2:** BIST active
- D3: aquisition of reciever data
- D4: aquisition of reciever data
- **D5:** simulator active
- D6: not used
- D7: not used
- D8: not used

Test points

- TP 1: GND
- TP 2: General purpose test output no.1
- **TP 3:** General purpose test output no.2

- TP 4: General purpose test output no.3
- **TP 5:** General purpose test output no.4
- **TP 6:** General purpose test output no.5
- **TP 7:** General purpose test output no.6
- **TP 8:** General purpose test output no.7
- **TP 9:** General purpose test output no.8
- **TP 10:** +5 Vdc
- TP 11: Clock pulse, CP, monitor
- **TP 12:** WE~ for testing RAM loading
- **TP 13:** GND
- **TP 14:** GND
- **TP 15:** GND

Connections

The following connections are made to the Signal Processor Board:

P1	Multibus		
P2	Signal processor external bus		
P3	Test signal output		
J1	Serial lines		
J2	Serial lines		

The trig out puls is active during transmit, and generated by SPRX. This is a TTL level pulse and is active when low.

- \rightarrow The connections are explained in the figure on page 173.
- → The Receiver Backplane connections(PXB-P3) are explained on page 202.

Receiver Backplane (RXBP)

Purpose and description

The purpose of the Receiver Backplane is to enable communication between the circuit boards plugged into it, and between these circuit boards and the external circuitry in the cabinet. The RXBP is located behind the middle wired rack in the Transceiver Unit, and holds the following circuit boards:

- Transmitter/Receiver Board 1
- Transmitter/Receiver Board 2
- Transmitter/Receiver Board 3
- Transmitter/Receiver Board 4
- Low Voltage Power Supply
- High Voltage Power Supply
- Signal Processor Board RX
- Capacitor Bank

How it works

There are no active components on this backplane.

Facilities

<u>LEDs</u>

None

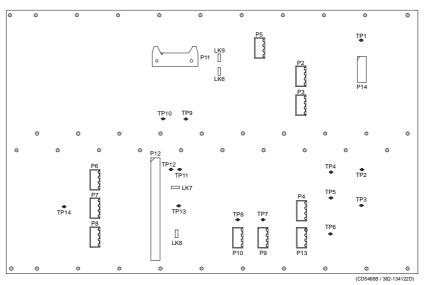


Figure 95 Receiver Backplane, rear side

<u>Links</u>

There are four links on this backplane:

LK6: ON

LK7: ON, HVCLK to HVCKR

LK8: ON, DA0 to DB0

LK9: OFF

Test points

All the test points listed below are only used during development and debugging:

- TP 1: GND
- **TP 2:** Read pulse to the TRB
- **TP 3:** Filter clk. to PDH's on the TRB
- **TP 4:** Write pulse to the TRB
- **TP 5:** Sample and hold to PDH's on the TRB
- TP 6: Four times demodulater frequency to PDH's on the TRB
- **TP 7:** TX enable to the TRB
- TP 8: GND
- TP 9: GND
- TP 10: Write pulse to fifo on the BSP
- TP 11: Read pulse to 2 port RAM on the SPTX
- TP 12: Write pulse to 2 port RAM on the SPTX
- TP 13: Test signal input to PDH's on the TRB

Only links LK7, LK8 and LK9 are applicable for system setup. These are closed as shown in the illustration.

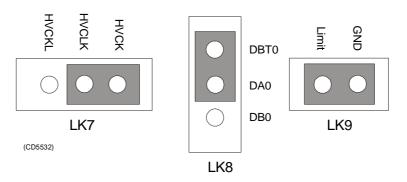
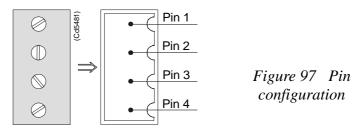



Figure 96 Links applicable

Connections

The sockets on the rear side of the backplane and their connections in the EM 300 Transceiver Unit are described in the tables below.

RXB-P2	Signal	Connection
1	STBY+	Bottom plate-Remote pin 1
2	STBY-	Bottom plate-Remote pin 2
3	ON	Bottom plate-Remote pin 3
4		

RXB-P3	Signal	Connection
1	HEAT	Wall sectTerminal block pin 1
2	STBY-	Wall sectTerminal block pin 2
3	TRIG	Bottom plate-pin 1
4	DGND	Bottom plate-pin 2

RXB-P5	Signal	Connection
1	+12VH	TXB-P3 pin 4
2	HGND	TXB-P3 pin 2
3	HGND	TXB-P3 pin 3
4	+5VH	TXB-P3 pin 1

RXB-P6	Signal	Connection
1	HGND	TXB-P4 pin 1
2	HGND	TXB-P4 pin 2
3	HV	TXB-P4 pin 3
4	HV	TXB-P4 pin 4

RXB-P7	Signal	Connection
1	HGND	TXB-P5 pin 1
2	HGND	TXB-P5 pin 2
3	HV	TXB-P5 pin 3
4	HV	TXB-P5 pin 4

RXB-P8	Signal	Connection
1	HGND	TXB-P6 pin 1
2	HGND	TXB-P6 pin 2
3	HV	TXB-P6 pin 3
4	HV	TXB-P6 pin 4

RXB-P9	Signal	Connection
1	POW1	TX/RX Fan pin 1
2	POW2	TX/RX Fan pin 3
3	POW1	PU Fuse pin 3
4	POW2	PU Fuse pin 4

RXB-P13	Signal	Connection
1	+5 Vdc	TXB-P2 pin 1
2	+5Vdc	TBX-P2 pin 2
3	DGND	TBX-P2 pin 3
4	DGND	TBX-P2 pin 4

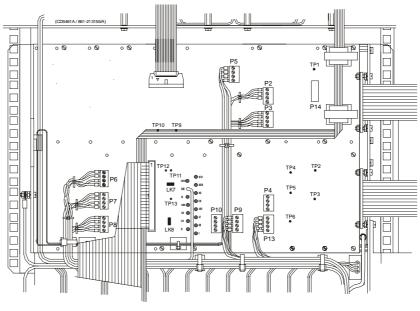


Figure 98 The Receiver Backplane

6.7 Transmitter rack details

Location

The Transmitter Rack is located at the bottom of the Transceiver Unit. It holds one processor board and a number of transmitter boards.

 \rightarrow Refer to the illustration on page 169

The physical number of transmitter boards is defined by the specified system accuracy:

• A 1 degree system has 14 transmitter boards

Circuit boards and modules

64-Channel Transmitter Board (TX64)

Each of these circuit boards holds 64 individual power amplifiers, each controlled by the function controller.

 \rightarrow The circuit board is explained on page 206

Signal Processor Board TX (SPTX)

The processor board is used as a function controller.

 \rightarrow The circuit board is explained on page 195

Backplane (TXBP)

The Transmitter Rack uses a passive backplane.

 \rightarrow The TX Backplane is explained on page 210

64-Channel Transmitter (TX64)

Purpose and description

Once the transmission parameters have been calculated by the Signal Processor Tx (SPTX), each of the transmitter boards is addressed. The data-bus from the SPTX is connected to all the boards, and data for the individual transmitters is loaded into the onboard RAMs as they are addressed from the SPTX. The output from the TX64 RAM bank is connected to the output stages, which are implemented using Kongsberg Maritime-designed amplifier hybrids.

The physical number of TX64 boards fitted to the EM 300 transceiver depends on the chosen system specifications. Thus, up to 14 64-Channel Transmitter (TX64) boards are used.

A one degree transmitter has 864 elements in the transducer and a two degree transmitter 432 elements. Hence a one degree Tx system needs 14 TX64 boards, the last 32 transmitters on the TX64 #14 is not used.

A two degree Tx system needs seven TX64 boards. Here the last 16 transmitters are not used on TX64 board # 7.

How it works

<u>Overview</u>

The TX64 boards are controlled by the Signal Processor TX (SPTX), and the output signals are made available on the front mounted sockets. Flat ribbon cables connect these output pulses to the filters.

The TX64 board is equipped with two large front mounted connectors. Two LED indicators and one test point are located between these connectors. The test point is a ground (GND) connection, while the LEDs monitor the +5 Vdc and +12 Vdc supply voltages.

The TX64 board is equipped with eight onboard fuses. These fuses are located on the High Voltage (HV) supply line, and each fuse protects a group of eight transmitters. Fuse rating is 4 A, physical size is 5 x 20 mm.

The functions of the transmitter may be divided into three parts:

- The power unit (Power & Fuses)
- The digital control unit
- The analogue transmitter driver unit (TX Hybrid)

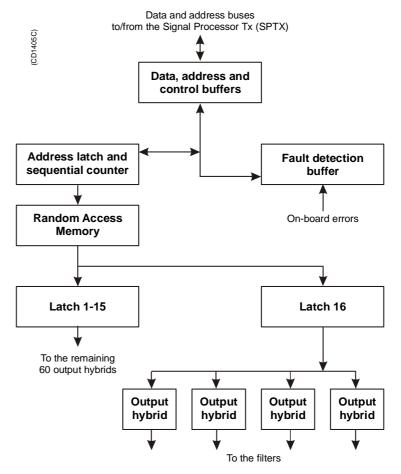


Figure 99 64-Channel Transmitter (TX64) block diagram

Power unit

The power unit includes the three separate supply voltages used and the components around them. The voltages are +12 Vdc, +5 Vdc and High Voltage (HV). The value of the HV depends on the desired output power. Typical range is +8 to +80 Vdc.

Digital control unit

The main function of the digital control unit is to supply the analogue transmitter unit with the correct driving signals.

The shape of the driving signals are temporarily stored in RAMs on the board. The RAMs are filled by the host processor. The drive signals for the output pulses are derived from the pattern. The signals are clocked and latched before they are supplied to the transmitter hybrids. The transmitted pulse is controlled by the address latches and the controller. The transmitted frequency is increased by 64 times, and is then supplied to the CLK input. The TX Enable (TXEN/) input enables the transmitters and controls the transmit pulse length.

Status information such as fuse blown can be read from the fault detect buffer on the data bus.

To lower the sidelobe level, IC U89 is omitted and a piggy back board is inserted. This piggy back board contains a PLD with doubled resolution for transmit beampattern.

Analogue transmitter unit

There are 64 transmitters on the board. Each of these is a thick film hybrid designed by Kongsberg Maritime. There are no frequency dependent components on the board. The transmitters are electrically designed into in groups of eight, each group being protected by a 4 A fuse. The transmitter outputs are brought to the front edge connectors P3 and P4.

Facilities

<u>LEDs</u>

D 9	+5 Vdc
D 10 +	12 Vdc

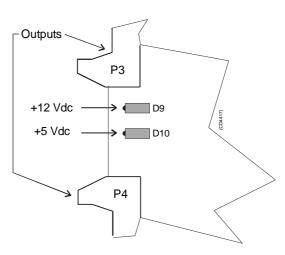


Figure 100 64-Channel Transmitter (TX64) front mounted devices

Test points

TP 1..... GND

<u>Links</u>

A number of links are implemented on the board to allow for several different applications. The links are used as follows:

LK1	Selects PROM (when ON)
LK2	Selects RAM (when ON)
Link applications	
The following links are ON (clo	sed) in this application:
• LK2	
Switches	
None	
Connections	
The TX64 is equipped with the f	following connectors:
P1 Connectio	ns to the external power supply
P 2	Interface to control processor
P 3 Outputs from	channels 01-32. Front mounted
P 4 Outputs from	channels 33-64. Front mounted
<u>Fuses</u>	
F 1	TX group 1, Channels 01-08
F 2	TX group 2, Channels 09-16
F 3	TX group 3, Channels 17-24
F 4	TX group 4, Channels 25-32
F 5	TX group 5, Channels 33-40
F 6	TX group 6, Channels 41-48
F 7	TX group 7, Channels 49-56
F 8	TX group 8, Channels 57-64
Fuse rating is 4 A. Physical fuse	size is 4 x 20 mm.
• • • • • • •	

Oscilloscope check points

- The Clock (CLK) is input on pin P2 B24, and connected to buffer U90, pin 4. The clock frequency varies with the transmission frequency, and will be 64 times this. Frequency alterations during one transmission are achieved by changing the clock frequency.
- The TX Enable (TXEN/) is input on pin P2 A22, and connected to buffer U90, pin 2. The TXEN/ pulse is the transmit trigger, and the length of the TXEN is also the length of the transmitted pulse. For EM 300 the TX frequency is from 30 to 34 kHz.

Transmitter Backplane (TXBP)

Purpose and description

The purpose of the transmitter Backplane is to enable communication between the circuit boards plugged into it, and between these circuit boards and the external circuitry in the cabinet. The TXBP is located behind the bottom wired rack in the Transceiver Unit, and holds the following circuit boards:

- 64-channel Transmitter Board (TX64)
- Signal Processor Board TX (SPB31)

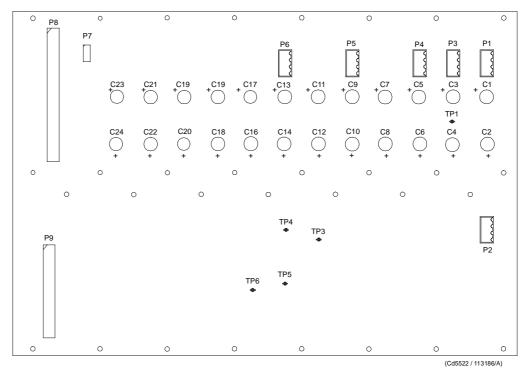


Figure 101 Transmitter Backplane, rear side

How it works

There are no active components on this backplane.

Facilities

<u>LEDs</u>

None

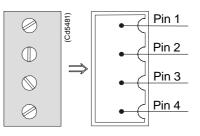
Test points

The following testpoints are only used during development and debugging.

- TP 1: DGND
- TP 2: DGND
- TP 3: SMEM/ Active low when data is read from TX64

TP 4: DMEM/ Active low when data is written to TX64 **TP 5:** DGND

TP 6: TXE/ Active low when transmit is ongoing.


Links

None.

Connections

The sockets on the rear side of the backplane and their connections in the EM 300 Transceiver Unit are described in the tables below.

Figure 102 Pin configuration

TXB-P1	Signal	Connection
1	GND	PU power supply
2	GND	PU power supply
3	+12 Vdc	PU power supply
4	+12 Vdc	PU power supply

TXB-P2	Signal	Connection
1	+5 Vdc	RXB-P13 pin 1
2	+5 Vdc	RXB-P13 pin 2
3	DGND	RXB-P13 pin 3
4	DGND	RXB-P13 pin 4

TXB-P3	Signal	Connection
1	+5 VH	RXB-P5 pin 4
2	HGND	RXB-P5 pin 2
3	HGND	RXB-P5 pin 3
4	+12 VH	RXB-P5 pin 1

TXB-P4	Signal	Connection
1	HGND	RXB-P6 pin 1
2	HGND	RXB-P6 pin 2
3	HGND	RXB-P6 pin 3
4	HGND	RXB-P6 pin 4

TXB-P5	Signal	Connection
1	HGND	RXB-P7 pin 1
2	HGND	RXB-P7 pin 2
3	HGND	RXB-P7 pin 3
4	HGND	RXB-P7 pin 4

TXB-P6	Signal	Connection
1	HGND	RXB-P8 pin 1
2	HGND	RXB-P8 pin 2
3	HGND	RXB-P8 pin 3
4	HGND	RXB-P8 pin 4

The bleeder is mounted on the Processing Unit power supply cover.

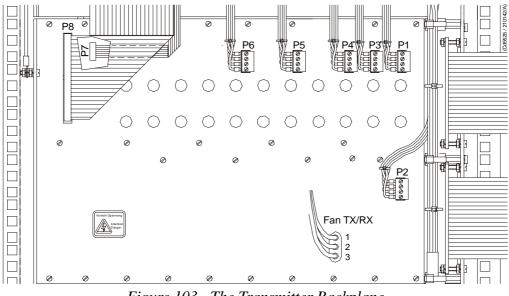


Figure 103 The Transmitter Backplane

7 RAW DATA LOGGER

7.1 Description and main functions

Overview

The Raw Data Logger is an option that can be mounted on the EM 300 Transceiver Unit. The main purpose is to log the samples throught out the water column for all 128 staves. The sample data can also be presented on the display.

The data logger contains:

- CD-writer
- harddisk
- Beamformer Signal Processing (BSP) board
- Control Processing Unit (CPU) board

A ribbon cable is connecting the EM 300 Transceiver Unit and the Raw Data Logger.

The CD-writer is used to load the Kongsberg Maritime software and to backup sample data to a CD-disk.

Software is installed on the BSP board and on the harddisk.

This chapter provides the following information:

- \rightarrow Description and main functions, page 213.
- \rightarrow Raw Data Logger outline, page 214.

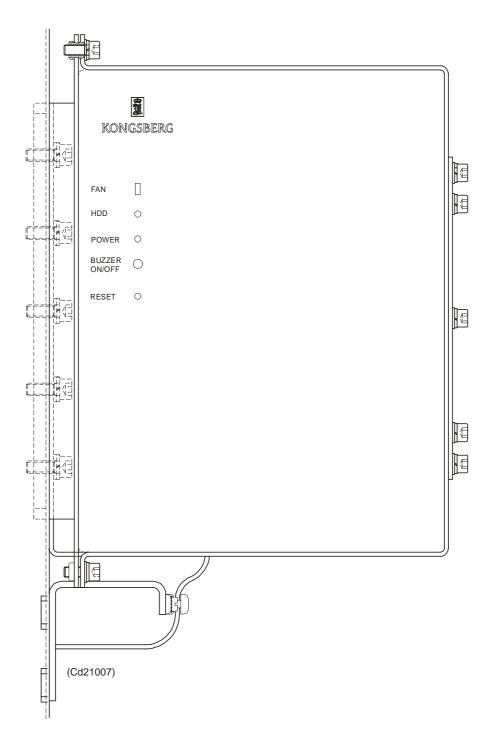


Figure 104 Raw Data Logger - Outline dimensions

8 TROUBLESHOOTING

8.1 Messages

Introduction

The EM 300 provides numerous messages to inform you of major and minor hardware and software errors.

The messages, if they occur, will be displayed in the Status Display in the Message field.

The different utilities operating on the EM 300 Operator Station each issue several messages. These messages can be sorted in four categories:

- display warnings
- display errors
- warnings
- errors

The messages presented as **display warnings** and **warnings** merely point out small inaccuracies, and must be regarded as guidelines to the normal operation of the system.

The **display errors** and operational **errors** reflect major and minor hardware and software errors, some of which must be acted upon to ensure the normal operational capability.

The following chapters present all the possible messages, and briefly explain the proper action to be taken.

The information is provided as follows:

<Nxxx>: - <Message text>

Necessary action with applicable references.

<**Nxxx>** is the message identifier. The number will allow you to find the message easier in this document, and it tells you which utility issued it.

N - module/utility identifier.

xxx - message identifier

In the list below you will find one letter representing each module. Each module is described in its own chapter. The number **xxx** is only an identifier.

S: setup messages

W: ESO/workstation messages

L: launchpad messages

E: sound speed profile editor messages

P: Ping Display messages

The **Hardware** and **CPU CMOS setup** messages are presented with the exact same layout. The Hardware messages also start with a message identifier <Nxxx>, and have a following message text.

The message text contains an error code which has to be decoded to get the exact error condition.

Most display errors are equipped with a help-textfunction, giving additional help on the errors. This text will, in most cases, be identical to the action text found in this manual.

Setup messages

The following messages are presented by the **Setup** utility.

Display Warning

S10: - Remember to set correct Gain parameters when using Manual bottom detection!

Normal mode should be Range And Gain, which uses Automatic bottom detection!

This mode should only be used when automatic bottom detection doesn't work. Make sure that the Depth To Normal Incidence depth indicator has a sensible value it should have a value fairly close to the expected depth.

Display Error

S15: - Unable to write BIST output buffer to printfile <filename>.

An attempt was made to open the printfile in the system defaults directory for writing, but the operation failed. You should have full read and write access to the directory and all files in the directory.

Display Error

S17: - Unable to write BIST output buffer to file <filename>.

An attempt was made to open the savefile in the system defaults directory for writing, but the operation failed. You should have full read and write access to the directory and all files in the directory.

Display Error

S18: - No reply to the current BIST test!

Each of the Built In Self Test (BIST) commands is required to give a response within a fixed period of time. The length of this period varies with the type of test. The Processing Units has sub-units that may not respond in time, but this should be reported back to the operator as part of the reply to the current BIST test.

If the Processing Unit does not respond within the allocated time period, you should try one of the other tests to see if this is a general problem. If this is the case, or if the problem persists, you should try rebooting the Processing Unit.

Display Warning

S21: – The profile is not deep enough, and should be extended. When you select the OK button, the profile will be sent to the profile editor for automatic extension.

All profiles used by the system require a maximum depth of 12000 meters. Profiles less deep will be extended by the system, starting from the original maximum depth. The extension is based on standard table values, with two points interpolated between last value pair in profile and first table value pair. <u>Error</u>

S25: - The Profile contains errors and will not be used. Errors detected:

The same message is used for several types of warnings:

- 1. Out-of-bounds depth values. Legal interval is 0 12000m.
- 2. Out-of-bounds sound speed values. Legal interval is $1400\,$ $1700\,m/s.$
- 3. Fewer actual samples than stated in profile header, using actual no. of samples in profile.
- 4. Gradient anolomies checking two neighbouring value pairs.

Even though you are given the choice to use the profile, it is recommended that you use the profile editor to verify and correct it. Otherwise, the echo sounder soundings may suffer quality degradation.

<u>Error</u>

S28: - Too step gradients...

If one or more of the samples are spike values, they should be removed from the profile.

Display Warning

S32: - The sound velocity profile <name> contains too few samples.

The profile header says that the profile contains less than two entries. At least two entries are required, and for any real life sounding that is really too few entries.

Display Warning

S33: - The sound velocity profile <name> contains more than 1000 samples!

The system is not designed to handle profiles exceeding 1000 depth/speed pairs. You should use the profile, or download again, using 1000 depth/speed pairs as a maximum.

Display Error

S37: - Sound Velocity Profile <name> was not found!

The specified profile was not located in the directory containing the sound speed profiles (\$SHAREDHOME). You could have misspelt the profile name, or the profile has been removed from this directory after it was selected. Try selecting the profile from the pull-down menu. This menu is updated every time it is opened, and should give you the exact list of available profiles.

<u>Display Error</u>

S50: – The file <filename> is not found in the \$HOME/<directory>, or in the \$NEPTUNEHOME/defaults directory.

<u>Error</u>

S61: – The following entries in the set-up-file are missing or contain an error in value specification:

All set-up parameters are checked when a set-up file is opened. Any parameters that are not within legal range or missing from the file will be listed in this message. By following the instructions, it is possible to get around the problem and recreate the set-up file. You may instead check if you have a backup version of the installation file in the system directory by selecting the 'File->Read...' option. You will probably find some older version of the file, because any modification of the installation parameters followed by a 'File-Save'creates a backup version of the file to be modified.

Display Error

S64: – Profile <name> has an error in line 1. The line should contain a space after the opening parenthesis and one space before the closing parenthesis. Correct the profile before reselecting...

According to the Simrad ASCII profile format, this space is required. You can fix the problem using a text editor. If you have downloaded the profile from an external source, please verify that your profile source or download programs adheres to the file syntax.

Display Error

S65: - Profile <name> has an error in line 1.

It seems that the header does not contain the correct no. of elements. Create the profile before retrying.

The profile header should start with "(" and close with ")". One or both of these elements could not be located in the header line. You can fix the problem using a text editor. If you have downloaded the profiles from an external source, please verify that your profile source or download programs adheres to the file syntax.

Display Error

S66: - Sound Velocity Profile directory <name> not found!

The missing directory (\$SHAREDHOME) is created during installation, and should always be present. If not, it means that someone has modified the file system. You should reinstall the system to recreate the proper operating environment.

Display Warning

S69: - Profiles in Simrad Survey Format cannot be downloaded...

The system cannot use this format for sound speed profiles. These profiles are produced when logging data, based on a Simrad ASCII format profile selected by the user. If this ASCII profile is no longer available, and you would like to use it again, you could use the Profile Editor to convert the profile into the Simrad ASCII profile format.

Display Error

S70: - The BIST for SW version returned an empty string!

Each of the Built In Self Test commands will return with the result being displayed in the BIST output area. This message informs you that a reply arrived, but that the reply contained no text to be displayed. This is clearly an error. Please repeat BIST command to check if the problem is repeatable. Errors like this should not occur, and if the problem persists, you are advised to reboot the Processing Unit and restart the operation station software.

<u>Error</u>

S71: - The Set-up-file is empty. Do you want to reinstall the default Simrad file?

The file containing installation parameter set-up values was empty. When this happens, the system can automatically install the default version of the file. The file may have been corrupted during a program crash. Confirming installation of default file allows you to continue. Otherwise, the system cannot be operated...

Display Error

S73: - Format error in BIST return for SW version request!

Each of the Built In Self Test commands will return with the result being displayed in the BIST output area. This message informs you that a reply arrived, but that the reply did not match the expected format. This is clearly an error. Please repeat BIST command to check if the problem is repeatable. Errors like this should not occur, and if the problem persists, you are advised to reboot the Processing Unit and restart the operation station software.

Display Error

S74: - 'BSP Test' failed - do you want to reboot the BSP unit?

The BSP sub-unit may occasionally lock up, with no pings being produced from the echo sounder. When that happens, the BSP BIST command will fail with this message. It is, however, possible to restart the BSP without rebooting the Processing Unit. This will happen when you confirm that a reboot is wanted. When the boot is completed, you should run the BSP BIST command again to verify that the unit responds correctly.

Display Error

S96: - Environment 'MODULE_ADDRESSES' undefined!

The program cannot operate without the specified environment. Please verify that the correct start-up procedure is used.

Display Error

S97: - Network Configuration File not found! File: <filename>

The program cannot operate without the specified file. Please verify that the file specified by the environment 'MODULE_ADDRESSES' with hostname as extension is present in your home directory, and that you at least have 'Read' permission.

<u>Error</u>

S98: - Error in connecting to input socket for program <program name>.

The set-up program tries to open an input socket, but the operation failed. The most likely explanation, is that the port no. specified for the set-up program already is in use. Check if any of the programs started from a previous session of the system are still running. If so, terminate these programs. If you do not know how to do this, it will in most cases be sufficient to log out and then back in. This will terminate any running programs and free up resources. Then restart the operator station software...

Display Error

S147: - Error sending datagrams to Ping Display!

Communication with the Ping Display uses IP socket communication, where the Ping Display has opened a specific port for data input. This error occurs when the set-up program tries to send to that port. The most likely explanation is that the port no. specified for the Ping Display is in use by another program.

Display Error

S148: – No profile name entered!

You have not specified a profile name - the input field is empty. Enter a profile name to proceed...

Display Warning

S150: – The file <filename> was empty, and factory defaults was read. Please verify all settings and save all settings using the 'File->Save' menu option.

The specified file containing set-up parameters (runtime or installation) was empty. When this happens, the system automatically installs the default version of the file. The file may have been corrupted during a program crash.

Display Error

S151: - The file <filename> is not found in the \$HOME directory, or in the \$NEPTUNEHOME/defaults directory. After verifying the settings, you may create the file by using the 'File->Save' menu option. The program terminates when you select the OK button.

The specified file containing set-up parameters (runtime or installation) is missing from the system directory, and was not located in any of the predefined locations for the file. The error indicates that the system somehow has been corrupted, possible due to manual operations in the file system. It is advisable to reinstall the system to re-establish system integrity.

Display Error

S152: – Not able to copy the file <filename> to \$HOME/<filename>. The program terminates when you select the OK button.

The specified file containing set-up parameters (runtime or installation) was missing from the system directory, and could not be copied to this directory. Due to problems with the directory access. The error indicates that the system somehow has been corrupted, possible due to manual operations in the file system. It is advisable to reinstall the system to re-establish system integrity.

Display Error

S206: - Min. Depth must be less than Max. Depth!

It should be fairly easy to fix - just enter a minimum value less than the maximum value...

Display Error

S207: - Max. Depth must be greater than Min. Depth!

It should be fairly easy to fix - just enter a maximum value greater than the minimum value...

Display Error

S208: - Legal interval: [<value>, <value>]

The input value is outside the specified interval - re-enter value to proceed...

Display Error

S211: - Couldn't locate Workspace of Main Program!

If this error occurs, it means that certain workspace functions will be disabled, but that the overall functionality will be present. It has been observed that restarting the Operator Station software may remove the problem.

Display Error

S212: - Couldn't connect to SMS Server!

Occurs when the program is started independent of the rest of the system, or when the operating environment is insufficiently defined. It means that none of the functionality based on running an integrated system will be present, thereby rendering the system inoperable. If restarting the system does not remove the problem, it is likely, that the easiest way to fix it is to reinstall the software.

Display Error

S213: - Illegal Window Configuration Command received: <command>

An unknown workspace or window command was received. Should not affect the main functionality of the program.

Display Error

S214: - Couldn't send status to SMS Server!

This is a serious error, which should not occur. It reflects internal corruption in the communication link with the rest of the system. It means that none of the functionality based on running an integrated system will be present, thereby rendering the system inoperable. If restarting the system does not remove the problem, it is likely, that the easiest way to fix it is to reinstall the software.

Display Error

S215: - Server Connection Broken!

This is a serious error, which should not occur. It reflects internal corruption in the communication link with the rest of the system. It means that none of the functionality based on running an integrated system will be present, thereby rendering the system inoperable. If restarting the system does not remove the problem, it is likely, that the easiest way to fix it is to reinstall the software.

Display Warning

S237: - No profile downloaded...

The system has not received any download profiles. When downloading takes place, the set-up program is notified of the profile name. So far, it seems that nothing has arrived.

Display Warning

S238: - Profile not located in profile directory!

When downloading takes place, the set-up program is notified of the profile name. The system has received a download profile, but it could not be located in the directory used for sound speed profiles.

Display Error

S239: – Sensor Offset + current sound speed exceeds maximum speed of 1700.0 m/s.

The system does not recognise sound speeds in water exceeding 1700 m/s. To correct, enter an offset value, which keeps the sum of sound speed and offset value below or equal to 1700 m/s.

Launchpad messages

The following messages are presented by the **Launchpad** utility.

Display Error

L12: - The following Program(s) should always run, but is still NOT running:

The Operator Station software is an integrated system, and is based on having a predefined set of programs running. If not, the echo sounder cannot be operated.

You may look for any messages related to the offending program in the 'Messages' area of the 'Status Display', or use the 'File->Print / View' menu item to bring up the 'Message Viewer'.

Select the icon for the offending program(s) to check for any messages that could help you locate and fix the problem.

Display Error

L13: - Echo Sounder Not Ready!

The Initial 'Power Up' Built In Self Test (BIST) has failed. Details may be found in the ESO Set-up BIST Self Test (Show->Testing) menu.

The Echo Sounder has a range of Built In Self Test (BIST) commands, testing various parts of the Sounder.

Every time the Operator Station software is started, a link to the Processing Unit is established and the Initial Power-Up-Test is performed. If this fails, the Echo Sounder is inoperable, and the operator should examine the error messages in the BIST test window in the Set-up-program.

Additional status information may be obtained using the other BIST tests available.

<u>Display Error</u>

L15: – Error in Runtime or Installation set–up values! Must be corrected before activating!

> All parameters go through verification checks. First while reading from the Set-up-file, and second while entering parameters manually. The reported error is detected while reading from a Set-up-file, and will block Echo Sounder operation until corrected.

> Set the correct value for the offending parameter(s) in the set-up program, and use the 'File' menu 'Read' command to read the set-up back in.

This will automatically verify the new set-up.

Display Warning

L16: - No reply from PU on 'Time Request'. Logging NOT started!

When activating logging of data, the system timestamps some of the datagrams used in the process.

The time to use was requested from the Processing Unit, but the reply did not arrive within a fixed period of time. This may be due to a Processing Unit running at full capacity, or - if the situation continues, while having a normal load on the system - that you may have network problems.

Display Warning

L39: - The <program name> program has not yet registered. Do you still want to wait for the program to come up?

> When starting one of the programs used by the system, it will try to hook up to enable the necessary communication and supervision. If a program does not succeed with this initial registration or hook up, it may have problems in the initial phase of starting up. Please refer to the 'Status Display, Messages Section' for possible error messages that may help sorting out the problems.

Display Error

L40: - The following Program(s) has not yet registered:

All programs started and supervised by the Launchpad establishes a communication link with the system when they are launched. The listed program(s) did not succeed in establishing this link. It could be that the program (s) crashed before the linkup was attempted. If so, the program(s) has no possibility to communicate with the rest of the system. You may try a manual start of the system in a window, to see if you can find any useful messages written in the window.

<u>Warning</u>

L45: - Error reading input datagram...

Reading from the communication input socket failed. This is a low-level error, and should not occur if the system managed to start properly. If the error persist, try terminating the system and restart the software again.

Display Error

L47: - The Initial Power Up Self Test failed. Do you want to repeat the test?

Please refer to the test menus in the Echo Sounder Set-up program for details.

<u>Warning</u>

L52: - Sound Speed At Transducer deviates more than X m/s from the corresponding value defined by the current Sound Speed Profile!

The sound speed at transducer depth received from the probe exceeded the selected alarm offset 5 times in a row. You should verify that you are using the correct sound speed profile, and also verify the size of the alarm offset.

Warning

L54: - Current Center Depth exceeds original maximum depth from the current Sound Speed Profile!

Center Beam Depth = <depth> Profile Max. Depth = <depth>.

The original profile had a maximum depth before the automatic profile extension extended the profile down to 12000 m. The depth you now are registering exceeds this depth. This could mean that your original profile isn't deep enough for this area.

Display Error

L59: - Echo Sounder Not Ready! Error in Sound Speed Profile!

> There are no samples in the current Sound Speed Profile! Verify & correct current profile, or select a new one! After doing this, you should run the Power Up Built In Self Test (BIST) to enable the system.

Display Error

L60: – Echo Sounder Not Ready! Error in echo sounder set-up parameters!

> All parameters go through verification checks. First while reading from set-up-file and second when entering parameters manually. The reported error is detected while reading from the set-up-file, and must be corrected before continuing! After doing this, you should run the Power Up Built In Self Test (BIST) to enable the system.

Display Error

L62: - No Processing Unit has been detected while scanning the Network.

Do you want to terminate the Launchpad?

The Operator Station is not receiving broadcast datagrams from the Processing Unit. The continuing flow of broadcast datagrams tells the rest of the system that the PU is still alive. To prevent gaps in the line and possible data corruption, logging was stopped. Possible reasons for loss of contact:

. Processing Unit is not Powered On

- . Network Cable Problems
- . Configuration Errors
- . Processing Unit Hardware / Software malfunction

<u>Error</u>

L64: - Connection timeout - Logging switched Off!

The Operator Station stopped receiving broadcast datagrams from the Processing Unit. The continuing flow of broadcasts datagrams tells the rest of the system that the PU is still alive. To prevent gaps in the line and possible data corruption, logging was stopped. Possible reasons for loss of contact:

.Processing Unit is not Powered On .Network Cable Problems .Configuration Errors .Processing Unit Hardware / Software malfunction

<u>Error</u>

L65: - Connection timeout - Pinging switched Off!

The Operator Station stopped receiving broadcast datagrams from the Processing Unit. The continuing flow of broadcast datagrams tells the rest of the system that the PU is still alive. The system status was set to No Pinging. Possible reasons for loss of contact:

.Processing Unit is not Powered On .Network Cable Problems .Configuration Errors .Processing Unit Hardware / Software malfunction

<u>Error</u>

L66: - Timeout in Processing Unit <-> Launchpad Connection!

The Operator Station stopped receiving broadcasts from the Processing Unit. The continuing flow of broadcasts tells the rest of the system that the PU is still alive. Possible reasons for loss of contact:

.Processing Unit is not Powered On .Network Cable Problems .Configuration Errors .Processing Unit Hardware / Software malfunction

Display Error

L67: - Format Error in Processing Unit Broadcast!

The Processing Units broadcast their presence on the Network. Such a broadcast message was received, but did not meet the format specification.

Display Error

L76: – No reply to the Initial Power–Up BIST. Do you want to Retry?

The network connection is OK, but the Processing Unit is not responding. Cancel the current attempt. Power the Processing Unit 'Off' and then 'On' again. Then try restarting the operating software.

Display Error

L83: - Could not create Config-file!

An attempt was made to store the current layout configuration onto the system defaults directory, but the operation failed. You should have full read & write access to this directory.

Display Error

L84: - Error in retrieving 'All Workspaces' info!

This is an internal error in the Launchpad, and should never happen. If it does occur, it will be during saving of the layout configuration to file. You should then restart the Operator Station software, and try the same command once again. This error may indicate internal problems for the Launchpad program, and should be reported.

Display Error

L85: - Program <name> contains an error in the configuration-file start-string!

This is a serious error. An attempt was made to update the main configuration file from data in memory. The attempt failed because the internal information did not adhere to the syntax for this type of information. You should exit and restart the system to avoid loss of operational control.

Display Error

L89: - Could not create Log-file Backup!

An attempt was made to open the log-file in the system defaults directory, but the operation failed. You should have full read & write access to this directory.

Display Error

L99: - Not able to change to Raw Data Directory <name> when generating Survey Parameters file.

An attempt was made to change the internal working directory to the one used for raw data (\$RAWDATAHOME), but the operation failed. Please verify that you have full read, write & execute access to this directory.

Display Warning

L111: – Tape Operation Aborted! Reason: The reason for an aborted tape operation may vary. With the exception of a user-triggered abort, the reason stated in the message body originates from the operating system, but should be fairly easy to understand. Examples of this could be a message stating that the tape drive is offline or that no data cartridge is loaded.

Display Warning

L112: - You cannot delete the current survey!

The current survey could be active, meaning that the associated directories and files are in use for data storage and processing. Removal of the current survey is therefore prohibited.

Display Warning

L113: - The Log-file is quite large: size X Mb - reset recommended!

The messages in the log-file may be viewed using the 'File->Print / View' command. If the file contains too many messages, it may be prove too 'crowded' for practical purposes. It is recommended that you pay heed to the suggestions of reset offered by the system. Use the 'File->Reset Log-file' option. If you are afraid of loosing useful information, please note that any errors reported while logging data, is logged in a separate log-file along with the survey data. Also remember, that you are offered the option of backing up your log-file before resetting.

Display Warning

L114: - You cannot alter logging set-up while logging is Active!

Due to the programmed functionality of the system, some parameters (logging set-up & installation parameters) may not be modified, because that would disrupt proper functionality and data integrity.

Display Warning

L117: – The root partition of this system now has less than 2Mb space left...

If the disk space on the root partition falls to zero, you may experience various types of problems while operating the system. It is advisable to increase this space to a minimum of 10 - 20 Mb.

Display Warning

Display Warning

<u>Display Error</u>

L120: – The main configuration file <filename> was not found. Since this is a vital file for the system, the Launchpad will terminate when you select the OK button...

This file contains the overall configuration of the operator station software. The system can't operate without this file. The file was copied to the system directory during installation, and may have been accidentally removed.

Display Error

L121: - Error(s) found in the Launchpad Configuration File!

When you select the 'OK' button, the file will be deleted and this program will terminate.

When restarting the system, the Factory Default Configuration File will be installed.

The Launchpad program uses a text-file to define which programs are included in the system. Quite a few bits of information are stored here, using a fixed syntax. This error occurs because the line for this program does not adhere to the syntax. An erroneous modification may have been done using a text editor. A new default version of the file will automatically be installed when restarting the system.

<u>Error</u>

L122: - There are too many entries in setup-file! Max = 18.

The configuration file contains all programs included in the integrated system, but may also contain programs added by the user. These programs may be started from the Launchpad, but are not supervised as the other programs.

The total number of entries has exceeded the maximum limit, probably due to manual modifications of this configuration file.

To restore the default file supplied by the system, remove the \$HOME/.eso_system/esoEmX_config file, and restart the system.

Error

L123: - Not able to obtain the icon for <this utility>!

Each of the programs integrated into the system has a button in the rightmost part of the Launchpad, and each of these buttons should have a symbol / icon for identification purposes.

The symbol name specified in the external configuration file was not found, indicating an error in the file, or a mismatch between the configuration file and the file containing the icon descriptions.

If this error occurs, a capital 'X' is drawn instead of the proper icon.

<u>Error</u>

L124: - Not able to obtain default icon!

Each of the programs integrated into the system has a button in the rightmost part of the Launchpad, and each of these buttons should have a symbol / icon for identification purposes.

The symbol name specified in the external configuration file was not found, indicating an error in the file, or a mismatch between the configuration file and the file containing the icon descriptions.

If this error occurs, a capital 'X' is drawn instead of the proper icon. This message indicates that the 'X' icon was not found.

Display Error

L137: - A survey name must be provided before this program can start!

Fill in or select a survey name to continue!

Display Error

L140: - Illegal character(s) in the Survey Name!

The characters ('>' or '<') are illegal as part of all file-names, survey-names and operator names. Space (' ') will be substituted with ' $_{-}$ '.

Display Error

L141: - Illegal character(s) in the Operator Name!

The characters ('>' or '<') are illegal as part of all file-names, survey-names and operator names. Space (' ') will be substituted with ' $_{-}$ '.

<u>Error</u>

L142: - Environment 'MODULES_ICON_FILE' not found, or empty! Fix and restart!

The file containing the icon descriptions used by the system cannot be located, because the environment variable, giving the name of this file, was undefined. All environment variables used by the system are defined when installing the system, so this message indicates a system installation error.

<u>Error</u>

L143: - Unable to open module icon description file <name> specified in environment 'MODULES_ICON_FILE. Fix and restart!

The file containing the icon descriptions could not be opened. The file may be missing, or you do not have the proper file access.

Display Error

L144: – Program <name> (possibly specified by the environment symbol <symbol name> in the start-up script) was not found in the Network Configuration File.

File: DPC.addresses.<hostname>

The system cannot work until the problem is fixed, and will terminate when you select the 'OK' button.

The specified file contains network addresses and port no.'s for all programs attached to the system. The error occurs when the program listed in the error message does not have an appropriate entry in the file.

Display Error

L145: - Error opening Network Configuration File!

File: DPC.addresses.<hostname>

The system cannot work until the problem is fixed, and will terminate when you select the 'OK' button.

The specified file contains network addresses and port no.'s for all programs attached to the system. The error occurs when your program tries to access this file, but is denied access. Several possible reasons:

1. The file does not exist. Removed? Wrong Name?

2. You have no file system access.

Display Error

L146: – Error in connecting to socket given by <entry name> in the file: DPC.addresses.<hostname>.

The system cannot work until the problem is fixed, and will terminate when you select the 'OK' button.

All programs in this system have an entry in the specified file. The most likely reason for this problem is that this entry is in use by a process (program) running on the system now. If you cannot find and terminate such a process, then try logging out and logging on before restarting the system.

Display Error

L147: – The following environment variables are undefined: <variable list>

Part of the system uses external definition of various elements used within the programs. One such type of external definition is Environment Variables. One or more of these are undefined, leaving the system without all information needed to function properly. The environment variables should be defined as part of the installation process, and these error points to either an error in the installation, or manual interference in the files defining these variables.

Display Error

L149: - Active Pos. Sys.: No Input...

The system does not receive any input from the positioning system defined as Active. This could be due to the wrong system being selected as Active. You should also check input port parameters in the set-up program, and finally, check that the cabling is OK and that the positioning system unit generates the correct datagrams.

Display Error

L150: - Heading Sensor: No Input...

The system does not receive any input from the system generating the Heading. This could be due to the wrong system being selected for Active Heading. You should also check input port parameters in the set- up program, and finally, check that the cabling is OK and that the unit from which heading is used, generates the correct datagrams.

Display Error

L151: - Attitude Sensor: No Input...

The system does not receive any input from the attitude sensor. You should check input port parameters in the set-up program, and that the cabling is OK. Also check that the attitude sensor generates the correct datagrams.

<u>Error</u>

L152: - Clock: No Input...

The system does not receive any clock input from the positioning system. You should check input port parameters in the set-up program, and that the cabling is OK. Also check that the positioning system generates the correct datagram.

<u>Error</u>

L154: - Logging of Survey Data to Disk was switched Off due to an error in the <name> program!

Refer to messages in the Status Display for further details.

<u>Error</u>

L155: – Logging of Raw Data to Disk was switched Off due to an error in the <name> program!

Refer to messages in the Status Display for further details.

<u>Display Error</u>

L163: – Quit Signal Received! System will shut down when you select the 'OK' button!

The system uses built-in mechanisms to handle signals (interrupts) originating both internally and externally. The type of signal is described in the message. All, except the external Terminate Signal, is caused by errors in the program.

Display Error

L164: – Floating Point Exeption! System will shut down when you select the 'OK' button!

The system uses built-in mechanisms to handle signals (interrupts) originating both internally and externally. The type of signal is described in the message. All, except the external Terminate Signal, is caused by errors in the program.

Display Error

L165: - Bus Error! System will shut down when you select the 'OK' button!

The system uses built- in mechanisms to handle signals (interrupts) originating both internally and externally. The type of signal is described in the message. All, except the external Terminate Signal, is caused by errors in the program.

Display Error

L166: – Segmentation Violation! System will shut down when you select the 'OK' button!

The system uses built-in mechanisms to handle signals (interrupts) originating both internally and externally. The type of signal is described in the message. All, except the external Terminate Signal, is caused by errors in the program.

Display Error

L167: - Terminate Signal Received! System will shut down when you select the 'OK' button!

The system uses built-in mechanisms to handle signals (interrupts) originating both internally and externally. The type of signal is described in the message. All except the external Terminate Signal, is caused by errors in the program.

Display Error

L168: – Illegal Instruction Signal Received! System will shut down when you select the 'OK' button!

The system uses built-in mechanisms to handle signals (interrupts) originating both internally and externally. The type of signal is described in the message. All, except the external Terminate Signal is caused by errors in the program.

L169: – SIGNAL <signal no.> received! System will shut down when you select the 'OK' button!

The system uses built-in mechanisms to handle signals (interrupts) originating both internally and externally. The type of signal is described in the message. All, except the external Terminate Signal, is caused by errors in the program.

<u>Error</u>

L170: - Unable to create Process List!

An attempt was made to open the process id log-file in the system directory for writing, but the operation failed. You should have full read & write access to the specified file and directory.

Error

L171: - Unable to open Process List!

An attempt was made to open the process id log-file in the system directory for reading, but the operation failed. You should have full read & write access to the specified file and directory.

Display Error

L172: - The following Programs are still running, and must be terminated before continuing:

The operating software uses several programs in an integrated system. Each running program is represented internally as a process. It has been observed, mostly after a crash, that these processes may continue to be active when they should not have been. The system detects these processes when it is restarted, and will, on users confirmation, issue termination commands before the system continues initialisation. But on rare occasions, the termination signal sent to these processes fails, and manual intervention is required as instructed in the error message.

Display Error

L173: - The following Programs could not be terminated:

The operating software uses several programs in an integrated system. Each running program is represented internally as a process. It has been observed, mostly after a crash, that these processes continue to be active when they should not have been. The system detects these processes when it is restarted, and will, on user confirmation, issue termination commands before the system continues initialisation. But on rare occasions, the termination signal sent to these processes fails, and manual intervention is required as instructed in the error message.

L176: - The following Program(s) should always run, but is still NOT running:

All programs started and supervised by the Launchpad establishes a communication link with the system when they are launched. The listed program(s) did not succeed in establishing this link. It could be that the program (s) crashed before the linkup was attempted. In that case, the program(s) has no possibility to communicate with the rest of the system. You may try to start the system manually in a window, to see if you can find any useful messages written in the window. These programs are so called system programs, and it will be impossible to run the system when they are not running as intended.

Display Error

L177: - Could not read Raw Data directory for survey <name>.

You do not have the correct access to the specified directory. Correct ownership of directories and files are defined when the system is installed, so this problem could be the result of a manual operation in the file system. Please verify that you have read, write & execute access to the storage directories for raw data (\$RAWDATAHOME).

Display Error

L178: – Not able to change to Survey Directory <name> when fetching Line Statistics file!

The system could not perform an internal change of directory to the specified directory due to error in directory access. You should have read, write & execute access to all directories and files in the data storage locations. Please verify and correct.

Display Error

 $\ensuremath{\text{L179:}}$ - Not able to change to Home Directory when fetching Line Statistics file!

The system could not perform an internal change of directory back to your login directory due to error in directory access. You should have read, write & execute access to all directories and files in the data storage locations. Please verify and correct.

L181: - Not able to copy the file <filename> to \$HOME/<filename>. Program terminates when you select the OK button!

This is the file setting up the configuration of the status filed in the Launchpad. An attempt was made to copy this file from the system defaults directory, but failed. You should have read & write access to all files in the system directory and to the directory itself. Please verify and correct.

Display Error

L182: - Could not open Operators File!

Open a terminal window, and go to the \$HOME/.eso_system directory. Verify that you have both Read and Write access to the file 'esoSetup.operators'.

<u>Display Error</u>

L183: – Not able to copy the Status Config file to <directory name>. Using default values...

This is the file setting up the configuration of the status fields in the Launchpad. An attempt was made to copy the file from the system defaults directory, but failed. You should have read & write access to all files in the system directory and to the directory itself. Please verify and correct.

Display Error

L184: - Status Config file not found.

Using default values...

This is the file setting up the configuration of the status fields in the Launchpad. It was not located in any of the predefined locations. This is an error by itself - but the system uses a default set- up, and will be operable. If you define a new status set- up, remember to save the set- up for later use.

Display Error

L186: - Could not init log-file!

It was not possible to create the file due to error in permissions. You should have read & write access to all files in the system directory and to the directory itself. Please verify and correct.

Display Error

L187: - Could not open log-file for append!

It was not possible to open the file for append due to error in file access. You should have read & write access to all files in the system directory. Please verify and correct.

L189: - Line Statistics File could not be opened!

Survey: <survey name>

File: line name>.linestat

The line statistics file for the specified line exists, but it could not be opened due to error in file access. You should have read, write & execute access to all files in the data storage directories. Please verify and correct.

Display Error

L190: - Statistics File for Survey <survey name>, line <line name> is empty!

The line statistics file for the specified line exists, but it was empty. It is difficult to state the reason for this, because all lines, no matter how small, should have something in this type of file. The file should be removed.

Display Error

L193: - Raw Data Parameters File for Survey <survey name> could not be opened!

The line parameters file for the specified line exists, but it could not be opened due to error in file access. You should have read, write and execute access to all data storage files and directories. Please verify and correct.

Display Error

L194: - Survey Parameters File for Survey <survey name>, line <line name> is empty!

The line parameters file for the specified line exists, but it was empty. It is difficult to state the reason for this, because all lines, no matter how small, should have something in this type of file. The file should be removed.

Display Error

L198: – Not able to change to Survey Directory <directory name> when fetching Line Statistics file!

There can be several reasons for this error, the most probable is that you don't have the correct access to the specified survey directory. Please verify that you have read, write & execute access to all directories in the \$PROCHOME location. '\$PROCHOME' is an environment variable defining the top location of your storage area for processed data (not raw data).

Display Error

L209: - You do not have WRITE access to file <name>.

You do not have the correct access to the specified file. Correct ownership of directories and files are defined when the system is installed, so this problem could be the result of a manual operation in the file system. Please verify that you have read, write & execute access to the shared system directory (\$SHAREDHOME) and all files and subdirectories.

Display Error

L212: - Operation cancelled! Echo Sounder not ready!

> The system was interrupted while performing a Power Up test. One of the main criteria for initiating the system is that the Power Up test is completed without error. When this test is cancelled, the system is defined to be inoperable. It will remain so until the test is completed successfully.

Display Error

L222: - Line Statistics File not found.

Survey: <survey name>

File: <line name>.linestat

The specified Line Statistics File does not exist. When terminating logging to a line, such a file is produced automatically. This error indicates that the file system has been manually modified.

Display Error

L228: – The file <filename> is not found on \$HOME/<name> directory, or on \$NEPTUNEHOME/defaults directory.

Since this is a vital file for the system, the Launchpad will terminate when you select the OK button...

The main configuration file is not located in any of the predefined locations. The system cannot be operated without this file. You should check if you have any backups of the system directory - one is made during every upgrade / reinstall of the system. If that fails, reinstall the system.

Display Error

L229: - The file <filename> is not found on \$HOME/<name> directory, or on \$NEPTUNEHOME/defaults directory. Using default set-up...

The main configuration file is not located in any of the predefined locations. The system cannot be operated without this file. You should check if you have any backups of the system directory - one is made during every upgrade / reinstall of the system. If that fails, reinstall the system.

Display Warning

L230: - Operator <name> has no Config-file...

Use the 'Update Operator's 'Config-file' popup menu option on the 'All Programs' icon in the 'Programs' section of the Launchpad. This will generate a default file for the current operator.

<u>Display Error</u>

L231: - The file <filename> is not found on \$HOME/<name> directory, or on \$NEPTUNEHOME/defaults directory.

The specified file is not located in any of the predefined locations. The system cannot be operated without this file. You should check if you have any backups of the system directory - there is made one during every upgrade / reinstall of the system. If that fails, reinstall the system.

Display Error

L232: - Not able to remove the file <file name>.

Check access and owner of the file. Program terminates when you select the OK button.

You do not have the correct access to the specified file. Correct ownership of directories and files are defined when the system is installed, so this problem could be the result of a manual operation in the file system. Please verify that you have read, write & execute access to the system directory and all files in this directory (\$HOME/.eso_system).

Display Error

L233: - Unable to open Table Of Contents!

You do not have the correct access to the selected file. Correct ownership of directories and files are defined when the system is installed, so this problem could be the result of a manual operation in the file system. Please verify that you have read, write & execute access to the system directory and all files in this directory (\$HOME/.eso system).

Display Error

L234: - Unable to open temporary copy of the log-file!

It was not possible to open the file, due to an error in file access. You should have read & write access to all files in the system directory (\$HOME/.eso_system). Please verify and correct.

Display Error

L235: - Cannot allocate enough memory for viewing the log-file. You should reset the file using the 'File->Reset Log-file' option.

The log-file was too big for the available memory resources. If it is important to view the log-file, you could try terminating as many of the programs as possible before retrying. If the problem persists, you should reset the log-file. When resetting, it is possible to take a backup copy of the log-file.

Display Error

L297: - Raw Data Parameters File for Survey <survey name> Line <line name> could not be opened!

> The parameter file for the specified survey exists, but it could not be opened due to error in file access. You should have read, write and execute access to all data storage files and directories. Please verify and correct. Due to the sequence of events producing this file, this error is not likely to occur.

Display Error

L298: - Survey Parameters File for Survey <name> does not exist!

The survey parameter file is based on the parameters for each line, and presents information regarding changes in line parameter set- up. For some reason, this file could not be produced. It may be, that there are no lines in the survey, or that the logged lines are corrupted.

Display Error

L299: - Raw Data Parameters File for Survey <survey name> Line <line name> does not exist!

> The file contains the parameter set-up being used when logging the line. For some reason, this file could not be produced. It may be that the logged line is corrupted.

Display Error

L300: - Environment variable for Network Configuration File not defined!

Some of the information required to have the system running properly, is set outside of the actual programs, using environment variables. The specified variable is not defined, and probably means an installation error, or manual modification in the definition of variables.

Display Error

L301: - Could not open Network Configuration File! File: <filename>

> It was not possible to open the file due to error in file access. You should have read & write access to all files in the system directory. Please verify and correct.

L302: - Unable to open Serial Datagram Set-up-file

It was not possible to open the file due to error in file access. You should have read & write access to all files in the system directory. Please verify and correct.

Display Error

L303: - Unable to open Datagram Set-up-file!

File: <filename>

This file contains the datagrams available for subscription. It will not be possible to use the subscription facility without this file. You should have read & write access to all files in the system directory. Please verify and correct.

Display Error

L304: – Format error on input from Datagram Set-up-file! File: <filename>

> Datagrams available for user-defined distribution are defined using a fixed format. One or more of the entries in this file does not fit this format. The safest way to fix the problem is to remove the file, and restart the system. The file will then be copied to the system directory, using the default version supplied with the installation.

Display Error

L318: - Illegal format on IP address!

Format: ddd.ddd.ddd, where 'd' is a digit. Leading zeros may be omitted.

> The networking addresses used by the system must follow the specified syntax. Normally, if you have subscribers running on the same computer as the operating software, you should use the IP address of this computer.

Display Warning

L321: -This is the system's broadcast IP address, and cannot be deleted. If you were thinking of defining a new broadcast address, this one will be automatically adjusted whenever the system's IP address is modified.

When removing an IP address, all programs having the selected address will be modified. Since the selected address is of vital importance for the system, deletion or modification is not allowed. The address is used to establish and maintain the connection with the echo sounder.

Display Warning

L325: - You cannot change the datagram set-up of the system's reserved programs!

Currently, only user-defined datagram subscriptions may be modified. Allowing the user to modify the flow of datagrams needed for proper operation of the system could result in operational problems.

Display Warning

L326: - You cannot modify the IP address of the system's reserved programs!

Currently, only user-defined datagram subscription set-up may be modified. Allowing the user to modify the networking set-up, needed for proper operation of the system, could result in operational problems.

Display Warning

L327: – The specified IP Port no. is outside bounds! Legal interval: [2000, 6000]

The interval is limited to avoid interfering with the internal port no. usage of the system. Using port no.'s already in use will give operational problems, both for the system programs and for user programs.

Display Warning

L328: - IP Port no. <port no.> is already in use by the <subscriber name> subscriber!

Legal IP Port interval: [2000, 6000]

Opening and using the same port no. for reading is not allowed. You may send datagrams to the same port no. from several programs, but since you are defining datagram distribution, you cannot use the same port as another program.

Display Warning

L333: - Logging cannot be started when Edit Mode is enabled in the Set-up menu!

The reason for this restriction is that when logging to a line is started, all current values of the installation parameters are logged with the data. And since only one such representation is possible per line, editing of these parameters is prohibited when already logging.

Display Error

L334: - PPS not received!

The system does not receive any input from the system generating the 1PPS. This could be due to the wrong system being selected for 1PPS. You should also check input port parameters in the set-up program, and finally, check that the cabling is OK and that the unit from which heading is used, generates the correct datagrams.

Display Warning

L335: - Initial Power-Up Test was interrupted! Echo Sounder Not Ready!

> The initial power-up test was interrupted by the user. And since it is an absolute requirement that this test is successfully completed, this test should be performed (with no errors reported).

Display Warning

L336: - No Sound Speed Probe values received!

The system is supposed to receive Sound Speed Probe values, bot does not receive any. Verify probe connections, set-up and power.

Display Error

L337: - Depth/Height Sensor: No Input...

The system is supposed to receive sensor input, but does not receive any. Verify sensor connections, set-up and power.

Warning

L355: - Unknown NMEA Telegram received...

The datagram received were not uniquely recognised. It seems to be a NMEA datagram, but one not supported by the system. The datagram may also contain format errors. Please refer to separate documentation on datagram definitions.

<u>Error</u>

L356: - Format Error in Remote Control Telegram!

The datagram received was recognised as a Remote Control datagram, but the content does not adhere to the datagram syntax. Please refer to separate documentation on datagram definitions.

Display Warning

L357: – Datagram subscriber 'remoteLogging' not defined!

Use 'Options->DatagramSubscriptions...'to enter 'remoteLogging' as a subscriber. Remember to supply IP address and port.no. to receive datagrams on!

The system has received a Remote Control datagram, but vital information is missing from the datagram distribution set-up. Without this, none of the remote control functionality will be available. The rest of the sounder will operate as normal.

Display Warning

L358: – No datagrams are selected for the 'remoteLogging' subscriber! Use 'Options->DatagramSubscriptions...' and select datagrams for subscription for the 'remoteLogging' subscriber.

> When using the Remote Control functionality, you must define a selection of datagrams that you want distributed to the 'remoteLogging' subscriber. Otherwise, nothing will flow to this subscriber, even though it is properly defined with an IP address and port number.

<u>Display Error</u>

L364: – The system is currently configured NOT to launch the Survey Display automatically. Changing this mode requires changing the configuration file...

Some installations have their own Survey Control software. The message indicates that the current configuration of the system has disabled this particular feature. Please refer to the documentation for information on how to enable this software.

Display Warning

L372: - Could not verify incoming profile!

The Profile Editor is already running, and profile verification is currently suspended. Terminating the current editor session will automatically bring up the received profile for verification.

Display Error

L400: - Could not open print tmp-file.

You do not have the correct access to a work-file in your own home directory. Correct ownership of directories and files are defined when the system is installed, so this problem could be the result of a manual operation in the file system. Please verify that you have read, write & execute access to your login directory and the files in this directory.

Display Error

L401: - Error in Launchpad Message Server Initialize!

Some system resources could not be allocated, because some other program is holding these resources. Check if any of the programs started from a previous session of the system are still running. If so, terminate these programs. If you do not know how to do this, it will in most cases be sufficient to log out and then back in. This will terminate any running programs and free up resources. Then restart the operator station software...

ESO messages

The following messages are presented by the ESO utility.

Display error

W5: - Serial Set-up-file <filename> missing. Install Default file?

The specified file is either removed or renamed. However, the default file provided will enable all functions on a system not extended with a serial port expansion card.

Display error

W9: - No Serial input device is open! Select the 'Smart Probe Profile Inputs' as the current serial I/O function in the 'Workstation I/O Interfaces' menu.

The serial port specified for this function could not be opened as expected probably due to error in read/write permission, or that a non-existing device is specified in the set-up-file.

Display error

W12: - Unable to open temporary file <filename>!

The error occurs because of inaccurate read/write permissions to the system directory. This is either an installation error, or an error introduced after installation.

Display error

W17: - Input Error. To enable new input, you must reselect the current input function.

The input format was not recognised. Reading from the serial port was disabled to avoid further input, and must be reactivated by reselecting the input function.

Display warning

W22: - No probe samples logged!

The sampling of probe values was terminated, but no values were actually received. Check probe connections and serial port set-up.

Display warning

W26: – The file <name> was empty. Factory Defaults was used instead. Please verify settings and use the 'File -> Save' command to make settings permanent.

This means that the set-up-file somehow has been corrupted. (E.g. system crash, text editor). A workaround is to set all parameters in the menus as required, and recreate the set-up-file using the 'File->Save' command. If this is followed by the 'File->Read' command, full functionality should be restored. Alternatively, you could exit the program remove the empty file - and then restart the program. This will enable you to install the default set-up-file delivered with the system.

Display error

W27: - The file <filename> is not found in the \$HOME directory, or on \$NEPTUNEHOME/defaults directory.

The set-up-file should be present in both the indicated locations. If you at any point have done a system upgrade, you should check for backup copies in any of the system directory backups in the login directory. Backup file syntax: ".eso system<date time>/

.esoSetup.serial". If no such files are found, search for the file on the CD-ROM containing the installation.

Display error

W28: - Not able to copy the file <filename> to \$HOME/.eso_system. Program terminates when you select the OK button.

The error occurs because of inaccurate read/write permissions to the system directory. This is either an installation error, or an error introduced after installation.

Display error

W29: -Not able to remove the file <filename>. Check access and owner of the file. Program terminates when you select the OK button.

The error occurs because of inaccurate read/write permissions to the system directory. This is either an installation error, or an error introduced after installation.

Display error

W30: - Unable to open device <device-name>! You may have a permission problem.

The error occurs because of inaccurate read/write permissions to the specified serial port device. This is either an installation error, or an error introduced after installation.

Display error

W40: - The set-up file is incomplete. Verify all parameters. Then save your configuration using the 'File->Save Set-up' menu option. Then read the set-up using the 'File->Read Set-up' to reinitiate the system!

The file could be corrupted (system crash), or modified outside the program (text editor), accidentally removing parts of the file.

Display error

W41: - Incomplete SVP CALC profile received on the network ...

When receiving from the network, AML CALC files are supposed to be received in one go, i.e. complete with both profile identifier and termination sequence. In this case, no termination sequence was found in input.

<u>Warning</u>

W43: - The device associated with this function is in active use by the following function:

<function>.

To use the selected function:

1. Switch OFF the other function

or

2. Change device associated with one of the two functions.

Warning

W44: - You must terminate any active functions before reading set-up file!

Warning

W45: - Could not open tide output file: <filename>. You may have a permission problem...

An attempt was made to open the tide file in the current survey directory, but the operation failed. You should have full read & write access to the directory and all files in the directory.

Correct the directory & file access and activate the tide input function again.

<u>Warning</u>

W46: - The <name> function cannot share device with the <name> function. Per definition, only the following functions may share device:

<list of functions>

These functions may all be active at the same time.

<u>Warning</u>

W53: - Serial Port input not recognised! To enable new input, you must reselect the last selected input function

The input received was not recognized. This could be due to errors in the format used for transmitted data, or, if a serial line is used, errors in setting up serial line characteristics.

<u>Warning</u>

W54: – Input buffer overrun – function disabled! To enable new input, you must reselect the currently disabled input function.

<u>Error</u>

W60: - The last command sequence to the probe failed. Repeat your latest action to retransmit sequence. If this message was issued when bringing up this window, select the 'Apply Settings' button in the 'Sampling Parameters' section to repeat sequence.

The probe did not recognize the last command issued. This could be caused by garbled serial line transfer. Verify your serial line settings and retry the command once again.

<u>Error</u>

W61: - No reply to last SV Plus command! Probe may be disconnected or without power...

<u>Error</u>

W62: Format Error in SV Plus Input!

The input from the probe was not recognized. This could be caused by garbled serial line transfer. Verify your serial line settings and retry the command once again.

8.2 Sound Speed Profile Editor messages

Sound Speed Profile Editor messages

The following messages are presented by the SSP Editor utility.

<u>Warning</u>

E10: – Profile contains fewer points than specified in Profile Header. Using number of points read from file!

The profile may have been edited manually, creating a mismatch between header no. of entries and actual no. of entries. The profile was automatically corrected.

Warning

E11: – Profile contains more points than specified in Profile Header. Using number of points read from file!

The profile may have been edited manually, creating a mismatch between header no. of entries and actual no. of entries. The profile was automatically corrected.

Warning

E13: - You have no WRITE access to profile directory <directory name>.

The profile directory is created with full Read and Write access when installing the system. This problem may be caused by manual modifications of the file system. Set the correct directory access before retransmitting.

Warning

E33: – The file <filename> containing the selected Sound Profile was not found.

Someone has deleted the selected Sound Velocity Profile from the disk after the list was created! The list was produced using only actual and existing profiles. If you have no idea how this could have happened, get in touch with the System Administrator.

Warning

E38: - You have no WRITE access to the selected Sound Velocity Profile directory!

The File Selection Box enables traversal of the file system directory structure, which means that you may select any directory as a storage area for the SV Profile - even those you do not have WRITE access to. If you are denied access to a directory that you would like to have access to, check the System Manager to see if this is permissible.

<u>Warning</u>

E42: - You have no DELETE access to the selected Sound Velocity Profile!

The profile directory is created with full Read and Write access when installing the system. This problem may be caused by manual modification of the file system. Set the correct directory & file access before retrying.

<u>Error</u>

E46: -

Environment 'SVP_EDITOR_MODULE_NO' not defined or empty! Environment 'SVP_EDITOR_MODULE_NAME' not defined or empty! These errors results in a program that does not work properly. Fix and restart!

> Most of the variable elements of the system configuration can be configured outside the programs. This is done by quite a few 'environment variables', which is set to an initial value when installing the system, and then fetched by the programs when needed. The environment variables listed in the error message must be set to match the initial values.

<u>Warning</u>

E54: – Please use the 'Save As...' command to give the profile a name.

Warning

E56: - No points in Profile...

The editable buffer is empty. Create a profile using the New Profile command in the File menu. You may also use the Copy SV Profile or the Combine SV Profiles in the Edit menu.

Warning

E60: - Illegal Survey Format File Name: <filename>

The survey format profile name does not match the syntax, which is as follows:

line_no_yyyymmdd_hhmmss_sensor_version>.sfsvp

The only way to correct this is to do a manual profile rename. Since the survey profiles are named autmatically, this is an error that should not have occurered.

<u>Warning</u>

E61: - Empty file: <filename>

The file does not contain any samples, and cannot be used. It is not possible to state any reasons for this. The file should be removed from the profiles directory.

<u>Warning</u>

E62: - Currently no editable profiles in work area to save!

8.3 Ping Display messages

Ping Display messages

The following messages are presented by the **Ping Display** utility.

P32: - No information received from the ESO! Ignore this message if used in stand-alone mode.

When starting up, the program tries to get some information from the ESO system. But when running in a standalone mode, it does not receive any answer. The requested information is not important in the standalone mode.

If you get this message when running as part of the complete system, try restarting the operator software.

8.4 Hardware messages

Hardware messages

The following messages are reported by the software monitoring the hardware circuitry in the Transceiver Unit.

400:	Illegal parameter value in command from PU to SPTX
402:	High voltage power supply too low.
	This is a failure reported by the SPRX.
	Action: Run the BIST program for more details.
403:	High Voltage power supply too high.
	This is a failure reported by the SPRX.
	Action: Run the BIST program for more details.
404:	Low Voltage power supply failure.
	This is a failure reported by the SPRX.
	Action: Run the BIST program for more details.
406:	DC offset problem on a number of receiver channels.
	This is a warning reported by the SPRX.
	Action: Run the RX_CHANNELS BIST program for more details.
420:	Illegal parameter value in command from PU.
	This is a warning reported by the BSP.
	Action: Run BSP BIST. If this does not help, restart the echo sounder.
421:	Communication problem between SPRX and BSP.
	This is a warning reported by the BSP.
	Action: Run SPRX and link SPRX-BSP BIST.
422:	Internal synchronisation problem on BSP.
	This is a warning reported by the BSP.
	Action: Run BSP BIST.
460:	No valid heading input.
	This is a failure reported by the PU.
	Action: Check heading input from sensor and installation parameters on the Operator Station.
461:	No valid attitude input.
	This is a warning reported by the PU.
	Action: Check heading input from sensor and installation parameters on the Operator Station.

462:	No valid position input.	
	This is a failure reported by the PU.	
	Action: Check heading input from sensor and installation parameters on the Operator Station.	
463:	No valid 1 PPS input.	
	This is a failure reported by the PU.	
	Action: Check heading input from sensor and installation parameters on the Operator Station.	
464:	Error in communication with TRU.	
	This is a failure reported by the PU.	
	Action: Check SPRX, LV power BIST. Check power in TRU RX.	
465:	Error in communication with BSP.	
	This is a failure reported by the PU.	
	Action:	
466:	Illegal parameter value in command from OS to PU.	
	This is a warning reported by the PU.	
	Action:	
467:	No external trigger received.	
	This is a warning reported by the PU.	
	Action: Check heading input from sensor and installation parameters on the Operator Station.	

8.5 CPU CMOS SETUP

Setup for SSC-486H

To change the setup you must mount a standard VGA card and connect a VGA monitor and a keyboard.

This setup is based on BIOS:KU26C-03B. Hit "DEL" key after power on and confirm/change to following settings in CMOS:

Advanced setup Typematic rate (char/sec): 30 System keyboard: Absent Primary display: Absent Mouse support: Disable Above 1MB memory test: Enable Memory test tick sound: Enable Parity error check: Enable Hit "DEL" message display: Enable Extended Bios RAM area: 0:300 Wait for "F1" if any error: Enable System boot up num-lock: On Numeric processor test: Enable Wietek processor: Absent Floppy drive seek at boot: Disable System boot up sequence: A:,C: System boot up CPU speed: High External cache: Enable Internal cache: Enable Internal cache WB or WT: WR-thru Turbo switch function: Enable Password checking: Setup Video shadow, C000, 16k: Enable Video shadow, C400, 16k: Enable Shadow, C800, 16k: Disable Shadow, CC00, 16k: Disable Shadow, D000, 16k: Disable

Shadow, D400, 16k: Disable Shadow, D800, 16k: Disable Shadow, DC00, 16k: Disable Shadow, E000, 64k: Disable IDE multi-sector transfer: Auto Primary IDE 32-bit transfer: Disable Primary IDE block mode: Master Primary IDE LBA mode: Mas/Sla Secondary IDE present: None Secondary IDE 32 bit transfer: Disable Secondary IDE Block mode: Disable Secondary IDE LBA mode: Mas/sla

Peripheral setup Onboard FDC: Enable Onboard IDE: Enb-pri Serial port 1: 3F8h Serial port 2: 2F8h Parallel port: 378h Parallel port mode: Normal Parallel extended mode: ECP

Chipset setup Auto config function: Enable Cache read: 3-2-2-2 Cache write: 1 ws DRAM wait: 1 ws DRAM page: Fast Keyboard clock: 9.5 MHz AT clock select: PCLK/4 Local ready: Delay 1T CPU ADS# delay: No delay Alt bit in tag SRAM: 7+1 bit Signal LDEV# sample time: in T3 HW DRAM parity check: Disable ISA bus refresh disable bit: Fast DRAM refresh method: Ras only Devider for refresh: Reserved (1/1) Video ROM cache C000, 16k: Disable Video ROM cache C400, 16k: Disable Adapter ROM cache: Disable System memory remap or not: Enable LOWA20# select: Chipset RC reset select: Chipset IO recovery time select: 5 BCLK Hold CPU percentage: Disable Software flush 80486: Disable Enable force read miss: Disable

Setup for SSC-5x86H

This setup is based on Award Bios v4.51G. ICP version KU35-LSV3.2. Hit "DEL" key after poweron and confirm/change to following settings in CMOS:

Standard setup

Primary Master: None

Primary Slave: None

Drive A: None

Drive B: None

Video: EGA/VGA

Halt on: All, but keyboard

BIOS features setup

Virus Warning: Disabled CPU internal cache: Enabled External cache: Enabled Quick power on self test: Disabled Boot sequence: A,C Swap floppy drive: Disabled Boot up floppy seek: Disabled Boot up Numlock status: On Boot up system speed: High Gate A20 option: Fast Memory parity check: Disabled Typematic rate setting: Disabled Typematic rate (chars/sec): 6 Typematic delay (msec): 250 Security option: Setup PS/2 mouse functional ctrl: Disabled PCI/VGA Palette snoop: Disabled OS selector for DRAM>64Mb: Non OS2 Video bios shadow: Enabled C8000-CFFFF Shadow: Disabled D0000-D7FFF Shadow: Disabled

Chipset features Auto configuration: Enabled AT-BUS CLK: CLK/4 DRAM read timing: Normal DRAM write timing: Normal SRAM read timing: 3-1-1-1 SRAM write timing: 0 Wait Hidden refresh: Disabled Memory hole (15M-16M): Disabled ISA I/O recovery: Enabled Fast back to back: Enabled

Power managment setup Power Management: Disable PM control by APM: Yes Video Off Option: Susp/stby -> OFF Video Off Method: V/H Sync+Blank MODEM use IRQ: 3 PM TIMERS HDD power down: Disabled

Doze mode: Disabled Standby mode: Disabled Suspend mode: Disabled PM EVENTS VGA: Off FDD (**3FxH**): On LPT & COM: LPT/COM HDD (1FXH): On **NMI: OFF** IRQ3 (COM2): On IRQ4 (COM1): On IRQ5 (LPT2): On IRQ6 Floppy disk: On IRQ7 LPT1: On IRQ8 RTC Alarm: Off IRQ9 IRQ2 redir: On IRQ10 Reserved: Off IRQ11 Reserved: Off IRQ12 PS/2 Mouse: On IRQ13 Coprocessor: Off IRQ14 Hard disk: On IRQ15 Reserved: Off Integrated peripherals **On-chip Local Bus IDE:** Disabled **Onboard FDC control:** Enabled **Onboard UART1: 3F8/IRQ4 Onboard UART2:** 2F8/IRQ3 **Onboard paralell port: 378** Parallel port mode: Normal

8.6 CMOS SETUP - standard Processing Unit

Setup for VIPer

Standard CMOS Setup

Date

Time

HARD DISKS	type	Mode
Primary Master	Auto	Auto
Primary Slave	Auto	Auto
Secondary Master	Auto	Auto
Secondary Master	Auto	Auto

Drive A: 1.44M, 3.5 in.

Drive B: None

Video: EGA/VGA Halt On: All, But Disk/Key

BIOS Feature Setup

While setting up the DiskOnModule or DiskOnFlash module, the CPU has to boot on the floppy drive!

Remember to put back before booting from DiskOnModule!

Boot Sequence: A,C,SCSI

Note

Note

Boot Sequence: C,A,SCSI

Disabled
Enabled
C,A,SCSI
Disabled
Disabled

Boot Up NumLock:	On
Gate A20 Option:	Fast
Typematic Rate Setting:	Disabled
Typematic Rate (Char/Sec):	6
Typematic Delay (Msec):	250
Security Option:	Setup
PCI/VGA Palette Snoop:	Disabled
OS Select For DRAM > 64MB:	Non-OS2
Report No FDD Fpr WIN 95:	Yes

Video BIOS Shadow:	Disabled
C8000-CBFFF Shadow:	Disabled
CC000-CFFFF Shadow:	Disabled
D0000-D3FFF Shadow:	Disabled
D4000-D7FFF Shadow:	Disabled
D8000-DBFFF Shadow:	Disabled
DC000-DFFFF Shadow:	Disabled

Chipset Features Setup

SDRAM RAS-to-CAS Delay:	3
SDRAM RAS Precharge Time:	3
SDRAM CAS latency Time:	3
SDRAM Precharge Control:	Disabled
DRAM Data Integrity Mode:	Non-ECC
System BIOS Chacheable:	Disabled
Video BIOS Chacheable:	Disabled
Video RAM Chacheable:	Disabled
8 Bit I/O Recovery Time:	3
16 Bit I/O Recovery Time:	2
Memory Hole at 15M-16M:	Enabled
Passive Release:	Enabled
Delayed Transaction:	Disabled
AGP Aperture Size (MB):	64

CPU Warning Temperature: 66°C/151°F Current System Temp: Current CPU Temperature CPU FAN Speed

VCCP:	VTT:	
VCC3:	+ 5 V:	
+12 V:	-12 V:	
- 5 V:		
Shutdown Temperature:		70°C/158°F

Power Management Setup

ACPI function:	Disabled
Power Management:	User Define
PM Control by APM:	No
Video Off Method:	V/H SYNC+Blank
Video Off After:	NA
MODEM Use IRQ:	NA
Doze Mode:	Disable
Standby Mode:	Disable
Suspend Mode:	Disable
HDD Power Down:	Disable
Throttle Duty Cycle:	62.5%
PCI/VGA Act-Monitor:	Disabled
Soft-Off by PWR-BTTN:	Instant-Off
PowerOn by Ring:	Enabled
Resume by Alarm:	Disabled

IRQ 8 Break Suspend: Disabled

** Reload Global Timer Events ** IRQ[3-7,9-15],NMI: Disabled

Primary IDE 0:	Disabled
Primary IDE 1:	Disabled
Secondary IDE 0:	Disabled
Secondary IDE 1:	Disabled
Floppy Disk:	Disabled
Serial Port:	Enabled
Parallel Port:	Disabled

PNP/PCI Configuration

PNP OS Installed:	No
Resource Controlled By:	Manual
Reset Configuration:	Disabled

IRQ-3	assigned to:	Legacy ISA
IRQ-4	assigned to:	Legacy ISA
IRQ-5	assigned to:	PCI/ISA PnP
IRQ-7	assigned to:	Legacy ISA
IRQ-9	assigned to:	Legacy ISA
IRQ-10	assigned to:	Legacy ISA
IRQ-11	assigned to:	Legacy ISA
IRQ-12	assigned to:	Legacy ISA
IRQ-14	assigned to:	PCI/ISA PnP
IRQ-15	assigned to:	PCI/ISA PnP
DMA-0) assigned to:	PCI/ISA PnP
DMA-1	assigned to:	PCI/ISA PnP
DMA-3	assigned to:	PCI/ISA PnP
DMA-5	assigned to:	PCI/ISA PnP
DMA-6	assigned to:	PCI/ISA PnP
DMA-7	assigned to:	PCI/ISA PnP

Used MEM base addr: N/A

Load BIOS Defaults

NO

Load Setup Defaults NO

Integrated peripherals

IDE HDD Block Mode:	Enabled
IDE Primary Master PIO:	Auto
IDE Primary Slave PIO:	Auto
IDE Secondary Master PIO:	Auto
IDE Secondary Slave PIO:	Auto
IDE Primary Master UDMA:	Auto
IDE Primary Slave UDMA:	Auto
IDE Secondary Master UDMA:	Auto
IDE Secondary Slave UDMA:	Auto
On-Chip Primary PCI IDE:	Enabled
On-Chip Secondary PCI IDE:	Enabled
USB Keyboard Support:	Disabled
Init Display first:	PCI Slot

KBC input clock:	8 MHz
Onboard FDC Controller:	Enabled
Onboard Serial Port 1:	3F8/IRQ4
Onboard Serial Port 2:	2F8/IRQ3
UART Mode Select:	Normal

Onboard Parallel Port:	378/IRQ7
Parallel Port Mode:	SPP

Supervisor password PASSWORD DISABLED

User password PASSWORD DISABLED

IDE HDD Auto detection

Do not choose Disk On Module here, it should be set to auto:

Primary Master:NoPrimary Slave:NoSecondary Master:No

Secondary Slave: No

Save and Exit Setup

YES

8.7 CMOS SETUP - Processing Unit

Setup for Smartio CI-104JS

Installation - jumper settings

Three serial cards are being used in the EMx Processing Rack. These cards must be set up in a slightly different manner. The Version 1 and 2 of the old card had jumper settings, while the new one must use software to program the flash on the card.

Programming of the serial-card - Smartio CI-104JS

The card is to be re-programmed for the use of correct ports and interrupts. This applies to both using the card with existing equipment, and with newer versions of the EM series that are to be produced in the future.

This card is for RS232 only!

The card is programmed with the program IO_IRQ.EXE. This is on the accompanying CD, and a copy is also available on a floppy disc.

Before programming JP-1 must be set on the card. JP-1 can be found in the upper left-hand corner of the card.

Insert the card in a PC running MS-DOS, boot the PC and start the program IO-IRQ.EXE. Please use online help to configure the card to the following set-up:

Resource	PU with SSC-4x86H and SSC-5x86H	PU with Viper CPU
IRQ	15	11
Interrupt vector	0x2C0	0x1C0
I/O address, port 1	0x280	0x180
I/O address, port 2	0x288	0x188
I/O address, port 3	0x290	0x190
I/O address, port 4	0x298	0x198

Save this configuration in the card, exit and turn the power off. **Remove the jumper JP-1 before the card is to be used.**

SmartIO serial card and SSC-5x86H AND SCC-4x86H

Serial-card is set up with IRQ 11 on the jumpers JP9, JP10, JP11, and JP12.

Note

Switch	1	2	3	4	5	6	7
SW 5	OFF	OFF	ON	ON	OFF	ON	ON
SW 1	OFF	OFF	OFF	OFF	ON	OFF	ON
SW 2	ON	OFF	OFF	OFF	ON	OFF	ON
SW 3	OFF	ON	OFF	OFF	ON	OFF	ON
SW 4	ON	ON	OFF	OFF	ON	OFF	ON

DIP Switches for SmartIO C114 Rev. 1.0:

DIP Switches for SmartIO C114 Rev. 2.0:

Switch	1	2	3	4	5	6	7
SW 5	ON	ON	OFF	OFF	ON	OFF	ON
SW 1	ON	ON	ON	ON	OFF	ON	OFF
SW 2	OFF	ON	ON	ON	OFF	ON	OFF
SW 3	ON	OFF	ON	ON	OFF	ON	OFF
SW 4	OFF	OFF	ON	ON	OFF	ON	OFF

SmartIO serial card and VIPER CPU card

Serial-card is set up with IRQ 15 on the jumpers JP9, JP10, JP11 and JP12.

Switch	1	2	3	4	5	6	7
SW 5	OFF	OFF	ON	ON	ON	OFF	ON
SW 1	OFF	OFF	OFF	OFF	ON	ON	OFF
SW 2	ON	OFF	OFF	OFF	ON	ON	OFF
SW 3	OFF	ON	OFF	OFF	ON	ON	OFF
SW 4	ON	ON	OFF	OFF	ON	ON	OFF

DIP Switches for SmartIO C114 Rev.1.0:

DIP Switches for SmartIO C114 Rev.2.0:

Switch	1	2	3	4	5	6	7
SW 5	ON	ON	OFF	OFF	OFF	ON	ON
SW 1	ON	ON	ON	ON	OFF	OFF	ON
SW 2	OFF	ON	ON	ON	OFF	OFF	ON
SW 3	ON	OFF	ON	ON	OFF	OFF	ON
SW 4	OFF	OFF	ON	ON	OFF	OFF	ON

Blank page

9 REPLACEMENT PROCEDURES

9.1 Introduction

Overview

This chapter presents the basic procedures for disassembly and reassembly of the replaceable parts in the EM 300 sonar system.

Tools required

A standard tool set is required to perform the removal and replacement of the modules. This tool set should contain the following tools:

- Cabinet key
- Standard screwdrivers in different widths and lengths
- Standard cross-slot screwdrivers in different widths and lengths
- Allen keys in metric sizes
- Philips screwdrivers in different sizes
- Pozidrive screwdrivers in different sizes
- Flat nosed pliers
- Lap jointed pliers
- Wire cutters
- Soldering iron
- Open ended and ring spanners in metric sizes
- Adjustable spanners
- Socket set

The following expendables are recommended:

- Solder
- Wire straps in different sizes

9.2 Transceiver Unit procedures

Overview for Transceiver Unit 125-210131

The Line Replaceable Units (LRUs) in the EM 300 Transceiver Unit with reg.no. 125-210131 are:

- Processing rack:
 - 4-Ports Serial Line Board
 - Beamformer & Signal Processor 1/2 (BSP1 and BSP2)
 - Ethernet Adapter
 - ROM bank
 - Control Processor Board (486)
 - Power supply
 - Fan
 - Motherboard
- Receiver rack:
 - Transmitter/Receiver board (x4) (TRB)
 - Low Voltage Power Unit (LVPU)
 - High Voltage Power Supply (HVPU)
 - Signal Processor Board RX (SPRX)
 - Capacitor bank
- Transmitter rack:
 - 64-Channel Transmitter Board (TX64)
 - Signal Processor Board TX (SPTX)
- Other devices:
 - AC mains fuse and filters
 - Fuses
 - Fan drawers

Overview for Transceiver Unit 125-211293

The Line Replaceable Units (LRUs) in the EM 300 Transceiver Unit with reg.no. 125-211293 are:

- Processing rack:
 - 4-Ports Serial Line Board
 - Beamformer & Signal Processor 1/2 (BSP1 and BSP2)
 - Ethernet Adapter
 - DiskOnModule flash disk (mounted on the CPU board)
 - Control Processor Board (586)
 - Power supply X 2 (HN5-9/OVP-A and OLD-12/15BB)
 - Fan
 - Motherboard

- Receiver rack:
 - Transmitter/Receiver board (x4) (TRB)
 - Low Voltage Power Unit (LVPU)
 - High Voltage Power Supply (HVPU)
 - Signal Processor Board RX (SPRX)
 - Capacitor bank
- Transmitter rack:
 - 64-Channel Transmitter Board (TX64)
 - Signal Processor Board TX (SPTX)
- Other devices:
 - AC mains fuse and filters
 - Fuses
 - Fan drawers

Overview for Transceiver Unit 125-218182

The Line Replaceable Units (LRUs) in the EM 300 Transceiver Unit with reg.no. 125-218182 are:

- Processing rack:
 - 4-Ports Serial Line Board
 - Beamformer & Signal Processor 1/2 (BSP1 and BSP2)
 - DiskOnFlash module (mounted on the CPU board)
 - Control Processor (CPU) Board (Viper)
 - Power supply X 3 (OLD-12C, OLD-12/15BB and IHE5-18)
 - Fan
 - Motherboard
- Receiver rack:
 - Transmitter/Receiver board (x4) (TRB)
 - Low Voltage Power Unit (LVPU)
 - High Voltage Power Supply (HVPU)
 - Signal Processor Board RX (SPRX)
 - Capacitor bank
- Transmitter rack:
 - 64-Channel Transmitter Board (TX64)
 - Signal Processor Board TX (SPTX)
- Other devices:
 - AC mains fuse and filters
 - Fuses
 - Fan drawers

The replacement procedures for these parts are described in the following disassembly & reassembly procedures.

Circuit boards and modules

Introduction

The Transceiver Unit holds three wired racks. All the wired racks hold plug-in circuit boards and modules. The replacement of these modules is described in this procedure.

The system must be switched off prior to disassembly. Access is gained to the wired racks by opening the front door of the Transceiver Unit. To open the front door, use the special tool for the cabinet doors. Before removing any modules, be sure that voltmeter on front of the High Voltage Supply shows zero (0) voltage.

- Processing rack
- \rightarrow The circuit boards and modules in the Processing rack are shown on page 55.
- Receiver rack
- → The circuit boards and modules in the Receiver rack are shown on page 72.
- Transmitter rack
- → The circuit boards and modules in the Transmitter rack are shown on page 49.

Disassembly procedure

- 1 Remove the front mounted cables from the applicable circuit boards.
- 2 Release the thumb-screws if required.
- **3** Pull the board/unit carefully out.

Software replacement

 \rightarrow Refer to page 280.

Replacement of all the circuit boards

In some cases, it might be necessary to replace all the circuit boards in the Transceiver Unit. The following procedure is then suggested:

- **1** Open the front door of the Transceiver Unit as previously described.
- 2 Switch off the circuit breaker on the right side of the Processor rack, and pull out the contact on the Low Voltage Power Unit. Wait until voltmeter on the High Voltage Supply shows "zero" volts.

- 3 Unplug the front mounted flat ribbon cable connectors on the Transmitter/Receiver boards and 64-Channel Transmitter (TX64) circuit boards. Use care; do not pull by the cables !
- 4 Remove the circuit boards and modules carefully.
- 5 Insert new circuit boards and modules in reverse order. Mount the front mounted flat ribbon cable connectors and the front covers.
- 6 Check that the circuit boards and modules have been installed in their correct locations! Refer to the applicable pictures and drawings.

Fan drawers

 \rightarrow Refer to page 282.

Heater element

Introduction

A heater element is mounted on the right wall in the bottom wired rack. The heater is included to ensure the temperature inside the cabinet remains stable when the system is switched off, thus preventing condensation forming inside the cabinet. The heater is a commercial item.

Disassembly procedure

- 1 Open the front door of the Transceiver Unit.
- 2 Switch off the front mounted circuit breaker located on the right side of the Processor rack
- **3** Open up the middle section of the cabinet

Do not open the middle cabinet while in rough sea. The cabinet is heavy, and sudden movements may cause damage or injury to personnel.

- 4 Note down the location of the wires prior to removal !
- 5 Locate the heater. Follow the heater cables to the terminal block, and disconnect the wires.
- 6 Loosen the rail support holding the heater in place, and allow the heater to slide out (forward).

Reassembly procedure

The new heater is replaced reversing the above procedure.

High Voltage Power Supply

Introduction

The power supply is located in the Receiver Rack, between the Low Voltage Power Supply and the Capacitor bank.

Caution

The High Voltage Power Supply (HVPS) is located in the middle wired rack. It is mounted on the right side of the Low Voltage Power Unit, behind the front panel.

Disassembly procedure

- 1 Open the front door of the Transceiver Unit.
- 2 Switch off the circuit breaker on the right side of the Processor rack, and pull out the contact on the Low Voltage Power Unit.

Caution Do not pull out the unit before the voltmeter shows zero (0) voltage.

- **3** Unbolt the unit. It is mounted with four captive-bolts so they cannot fall out. The nuts and spring washers are accessible.
- 4 Locate the power supply.
- 5 Note down the location of the wires prior to removal !
- **6** Disconnect the wires.
- 7 Unbolt the screws that holds the power supply.
- 8 Remove the power supply.

Reassembly procedure

The new power supply is replaced by reversing the above procedure.

AC mains circuit breaker

Introduction

The circuit breaker is located on the right side of the Processing rack.

Disassembly procedure

- **1** Switch off the AC input to the cabinet.
- 2 Open the front door of the Transceiver Unit. Open up the middle part of the cabinet and swing the middle section towards the left.

Do not open the middle cabinet while in rough sea. The
cabinet is heavy, and sudden movements may cause
damage or injury to personnel.

Make sure that the input AC voltage is switched off prior to commencing the disassembly.

Caution

- 3 Unbolt the 4 screws on each side of the Processor rack to loosen the entire rack. Push the rack carefully backwards until the screws that hold the circuit breaker are available with a screwdriver. It might be necessary to loosen some straps that holds the cables.
- 4 Note down the location of the wires prior to removal !
- 5 Disconnect the wires on the faulty circuit breaker.
- 6 Unbolt the screws that holds the circuit breaker
- 7 Remove the circuit breaker carefully.

Reassembly procedure

Replace by reversing the above procedure.

AC mains filter

Introduction

The mains AC filter is located on the bottom plate of the Transceiver Unit.

Disassembly procedure

- **1** Switch off the AC input to the cabinet.
- 2 Open the front door of the Transceiver Unit. Open up the middle part of the cabinet and swing the middle section towards the left.

Caution Do not open the middle cabinet while in rough sea. The cabinet is heavy, and sudden movements may cause damage or injury to personnel.

Caution Make sure that the input AC voltage is switched off prior to commencing the disassembly.

- **3** Note down the location of the wires prior to removal !
- 4 Disconnect the wires on the faulty AC filter.
- 5 Unbolt the 2 screws that holds the AC filter from the undeside of the bottom plate and remove the filter.

Reassembly procedure

Replace by reversing the above procedure.

Fuse replacement

Introduction

The Transceiver Unit holds several power supplies. Two of these are equipped with primary fuses.

- Low Voltage Power Unit
- High Voltage Power Supply

Disassembly procedure

The fuses on these power supplies are front mounted. No disassembly is required.

Reassembly procedure

Replace with the same type of fuse.

TX64 Fuse replacement

Introduction

The 64-Channel Transmitter Board (TX64) is equipped with eight fuses. These are located side by side on the circuit board. Each fuse protects a group of eight output channels.

- Physical dimensions: 5 x 20 mm
- Rating: 4 A

If any of the fuses blow, the appropriate group of transmitters will fail.

Disassembly procedure

- 1 Open the front door of the Transceiver Unit.
- 2 Remove the flat ribbon cables on the TX64 boards.
- **3** Pull out the board.

Reassembly procedure

Reverse the above procedure.

Software replacement

Overview

Normally the spare boards are fully equiped with software. If this is not the case, follow the instructions below.

Several of the circuit boards in the wired racks hold software on onboard PROMs and PALs. These devices must be moved from a faulty circuit board to a new spare. This is a delicate job, and the circuit board and the memory devices must be handled with great care.

The following precautions must be taken:

- The software replacement operation must be performed on a stable workbench or table.
- The table must be covered with an antistatic mat connected to the ship's ground
- The maintenance technician or engineer must wear a grounding bracelet, firmly connected to the ship's ground.
- All circuit boards must be stored in anti-static bags while not in use.

Each software device is identified with a white label. This label holds the following information:

- Circuit board	E.g. SPB
- Device number	E.g. U15
- Software version	E.g. V1.1
- Date	E.g. 90.09.15
- Checksum (in hexadecimal)	E.g. 05A3

Disassembly

- **1** Identify the device to be removed and write down the location of pin 1.
- 2 Use a small screwdriver or a special extraction tool and remove the device carefully from its socket on the source circuit board.
- 3 Enure that the device is lifted as vertically as possible to prevent damage to the pins.
- Once the device has been removed, handle it with care !

Insertion

1 Identify the socket where the device is to be located, place the device carefully into the socket, and ensure that it is orientated correctly.

Caution

- 2 Press the device gently but firmly into the socket using even pressure over the whole surface area.
- 3 After insertion, check that all the pins are properly inserted into the socket, and that no pins are bent.

Resassembly procedure

Several circuit boards contain software mounted in PROMs, or other hardware devices. In the event of board replacement, ensure that the correct firmware devices are mounted and that correct links are fitted.

- 1 Locate the new module in the rack ensuring that module is correctly positioned in the guide rails.
- 2 Slide the board gently into the rack ensuring that the rear connectors mate correctly. Secure the thumb-screws.
- 3 Reconnect the flat ribbon cables (if any) onto the front of the board. Ensure that no pins are bent or broken, and that the plugs connect properly. Clip the locks onto the connectors to ensure the board is held securely in position.
- 4 Close the cabinet door.

Note

Fan drawers

Introduction

There are several fan drawers in the sonar system. Three fans are located in the bottom of the Receiver Rack and the Transmitter Rack. They are either 230 Vac or 110 Vac. The two fans in the Processing Rack are 12 Vdc.

The sonar system must be switched off. Access is gained to the wired racks by opening the front door of the Transceiver Unit.

Disassembly procedure

The fan drawers located underneath the wired racks:

- 1 Gain access to the wired rack.
- 2 Twist the right thumb-screw on the fan drawer anti-clockwise a few turns, and the left thumb-screw clockwise a few turns.
- **3** Pull out the fan drawer.

The two fan drawers located in the Processing Rack:

- 1 Gain access to the Processing Rack by opening the front door.
- 2 Loosen the ribbon cable connected to RXB-P11.
- **3** Unscrew the eight screws holding the Processing Rack (in the front) and carefully pull it out. The screws are located on top and bottom of the rack.

Some cables might have to be loosened.

4 The fans are located on the right hand side.

Reassembly procedure

The fan drawers located underneath the wired racks:

- **1** Push the drawer in. Make sure that the unit connects properly to the rear socket.
- 2 Secure the unit with the thumbscrews.
- **3** Close the cabinet door.

The two fan drawers located in the Processing Rack:

- **1** Replace the fan back on the chassis.
- 2 Put the chassis back into the rack.
- **3** Close the front door.

Note

10 DATAGRAM FORMATS

10.1 Introduction

Note The information herein is common for the EM 3000, EM 2000, EM 1002, EM 300 and EM 120 multibeam echo sounders. Some of the information may not be relevant for your specific system. Please disregard this. Note The information in this document is not valid for the EM 12, EM 100, EM 950 and EM 1000 multibeam echo sounders. The formats for data input and output to and from the EM Series multibeam echo sounders are described here. The information given here is valid for the Kongsberg Maritime multibeam echo sounders introduced after 1995. Note In order to meet special customer requirements, Kongsberg Maritime may have to change the datagram formats described here. The formats presented in this document may therefore be altered without prior notice, although backward compatibility will be maintained as far as possible. Before software is written in accordance with this document, it is strongly recommended to contact Kongsberg Maritime to ensure that the latest version is used, and that any planned changes are taken into account.

10.2 Presentation format

The format description is according to the NMEA 0183 standard for ASCII fields, with the ASCII character(s) given as follows:

- "x.x" defines a variable length numerical field, with optionally included decimal point and sign.
- "c--c" defines a variable length field of printable characters.
- "x--x" defines a variable length field of numeric characters.
- "a__" defines a fixed length field of alphabetical characters (for example "aa"= two character long field.
- "x__" defines a fixed length field of numeric characters.

For binary fields, the length is given in number of bytes plus "U" for unsigned and "S" for signed data.

10.3 Input datagrams

Introduction

Only a limited number of input formats from external sensors are accepted. These are primarily in accordance with the NMEA 0183 specification, or based upon the principles of that specification.

The majority of these formats have not been defined by Kongsberg Maritime. Thus, these formats are not controlled by Kongsberg Maritime.

Almost all input formats are ASCII. Serial line input on the multibeam echo sounder's Processing Unit is most common, but some datagrams - which are not time critical - are interfaced on serial line(s) or Ethernet to the Operator Station.

Position

Overview

The EM Series accepts position data in the following formats:

- NMEA 0183 GGA
- GGK
- SIMRAD 90
- With the GGA and GGK datagrams, information contained in NMEA 0183 VGST and VTG datagrams will also be accepted and used.
- A datagram format for Sonar Head depth is provided for the EM 3000 and the EM 2000. Note that the format is the same as that used by the Paroscientific Digiquartz pressure sensor. This format may also be used for input of for example varying datum heights or other special height information on all models.

• A datagram format for input of tidal height is provided.

The **GGA format** is given below according to the NMEA 0183 version 2.30 description. Additional data at the end of the datagram is accepted to cater for users who need to log additional information than what is provided in the standard format. This is also supported with the GGK format. The total datagram length must be limited to less than 128 bytes if additional data is included.

Note While such additional data will be logged, it is up to the user to extract the data to whatever use is required in postprocessing. Anyone using this possibility must also be aware that any future changes to the GGA or GGK format may require modifications in the datagrams and hence data decoding.

Note

The **GGK format** was originally defined by the US Army Corps of Engineers for their tests with kinematic GPS. Trimble's proprietary version of the format is supported. If any changes to the format are made if it becomes part of the NMEA standard, this will be implemented.

To preserve the inherent accuracy of the kinematic GPS data it is necessary to correct the data for vessel motion. This requires accurate timing synchronisation between the motion sensor and the GPS receiver. It is therefore imperative that:

• the position datagram has a constant and known time delay

or

• the time stamp in the datagram is actually the time of the position fix, that synchronisation to the 1 PPS signal of the GPS receiver is enabled, and that the system clock has been set correctly

As neither of these conditions may not be possible to achieve with a sufficient accuracy, the application of motion correction is operator selectable. Motion compensation may be applied to any position input, not only kinematic GPS.

In addition to position data from the GGA or GGK datagrams, speed and course over ground from **NMEA VTG** datagrams may also be copied into the position output datagram. These values may be useful in filtering of the positioning during postprocessing. If a VTG datagram does not follow the GGA or GGK datagram the course and speed fields of the output datagrams will be set to their invalid values.

The "Standard deviation of semi-major axis of error ellipse" field in a **NMEA GST** datagram may also be copied to the position output datagram as its "Measure of position fix quality". It will then replace the use of the HDOP or DOP field in the GGA or GGK datagram respectively to derive this field. This must be enabled by the operator however, and then if the GST datagram does not follow the GGA or GGK the quality measure field of the output datagram will be set to its invalid value.

As an alternative to GGA, the **SIMRAD 90 format** position datagram may be used. The SIMRAD 90 format is intended to be the format of choice when the positioning system is not a stand-alone GPS receiver supplying GGA or GGK format datagrams. The SIMRAD 90 format can in addition to global longitude latitude coordinates also be used for Northing Easting type projection coordinates (e.g. UTM). To cater for applications where the EM 2000 or EM 3000 Sonar Head is mounted on a subsea vehicle, the original SIMRAD 90 format has been expanded to allow inclusion of the depth of the vehicle in addition to its horizontal position in longitude latitude or Northing Easting coordinates.

Also for EM 2000 and EM 3000 applications with separate surface and underwater positioning systems, the SIMRAD 90 format will allow the underwater position to be provided relative to the vessel, with the vessel surface position given in a separate GGA, GGK or SIMRAD 90 datagram.

Data Description	Format	Valid range	Note
Start identifier = \$	Always 24h	-	-
Talker identifier	aa	Capital letters	-
Sentence formatter	Always GGA,	-	-
UTC of position	hhmmss.ss,	000000 to 235959.9	-
Latitude in degrees and minutes, plus optional decimal minutes	. ,	0000 to 9000.0	-
Latitude – N/S	a,	N or S	-
Longitude in degrees and minutes, plus optional decimal minutes	ууууу.уу,	00000 to 18000.0	-
Longitude – E/W	a,	E or W	-
GPS quality indicator	Х,	0 to 8	1
Number of satellites in use	XX,	00 to 12	-
HDOP	X.X,	0 to	1
Antenna altitude re mean sea level (geoid)	X.X,	-	2
Units of antenna altitude	Μ,	-	-
Geoidal separation (sea level re WGS-84)	X.X,	-	2
Units of geoidal separation	М,	-	_
Age of differential GPS data	X.X,	-	-
Differential reference station id	XXXX,	0000 to 1023	_
Possible extension of datagram with user defined data (addition to NMEA format)	сс	-	3
Checksum	*hh	-	-
End of sentence delimiter = CRLF	Always 0Dh 0Ah	-	-

GGA Datagram

Note 1

The HDOP (Horizontal Dilution Of Precision) value will be scaled and copied to the "Measure of position fix quality" field in the position output datagram. The scale factor depends upon the GPS quality indicator's value:

- 1 (SPS or standard GPS) => 1000
- 2 (differential GPS) => 100

- 3 (PPS or precise GPS) => 200, but 10 if GGA is treated as RTK. (See Note 2)
- 4 (kinematic GPS with fixed integers) => 10
- 5 (kinematic GPS with floating integers) => 50
- 6 (estimated or dead reckoning mode) => 1000
- 7 (manual input mode) => 1000
- 8 (test mode) => 1000, but 10 if GGA is treated as RTK. (See Note 2)
- The "Measure of position fix quality" field will be set to 65534 (largest valid number) if the indicator is zero (non-valid position).

This scaling is used to give at least a relatively correct position fix quality change (in the order of cm) if there are dropouts in differential, precise or kinematic measurements, although HDOP is not a meter value.

Note 2

When the quality factor is 4 or 5 a height output datagram is automatically generated, and also if the quality factor is 3 or 8 and the operator has set the GGA position to be an RTK position. The height is the sum of these two fields which are assumed positive upwards (antenna above geoid).

Note 3

The maximum length of this field should is restricted so that the total datagram length is not more than 127 bytes.

Data Description	Format	Valid range	Note
Start identifier = \$	Always 24h	-	-
Talker identifier	aa	Capital letters	-
Sentence formatter	Always GGK,	-	-
UTC time of position	hhmmss.ss,	000000 to 235959.99	-
UTC date of position	MMDDYY,	010100 to 123199	-
Latitude in degrees and minutes, plus optional decimal minutes	. ,	0000 to 9000.0	-
Latitude – N/S	а,	N or S	-
Longitude in degrees and minutes, plus optional decimal minutes	ууууу.уууууу,	00000 to 18000.0	-
Longitude – E/W	а,	E or W	-
GPS quality indicator	Х,	0 to 3	1
Number of satellites in use	XX,	00 to 12	-
DOP	Х.Х,	0 —	1
Antenna ellipsoidal height	Х.Х,	-	-
Units of antenna ellipsoidal height	М,	-	-
Possible extension of datagram with user defined data	сс	-	2
Checksum	*hh	-	-
End of sentence delimiter = CRLF	Always 0Dh 0Ah	-	-

GGK Datagram

Note 1

The DOP (Dilution Of Precision) value will be scaled and copied to the "Measure of position fix quality" field in the position output datagram. The scale factor depends upon the GPS quality indicator's value:

- 1 (SPS or standard GPS) \Rightarrow 1000
- 2 (differential GPS) \Rightarrow 100
- 3 (kinematic GPS) $\Rightarrow 10$

The "Measure of position fix quality" field will be set to 65534 (largest valid number) if the indicator is zero (non-valid position).

This scaling is used to give at least a relatively correct position fix quality change (in cm) if there are dropouts in differential, precise or kinematic measurements, although DOP is not a meter value.

Note 2

The maximum length of this field should is restricted so that the total datagram length is not more than 127 bytes.

Data Description	Format	Valid range	Note
Start identifier = \$	Always 24h	-	-
Talker identifier	aa	Capital letters	-
Sentence formatter	Always GST,	-	-
UTC time of the GGA or GGK associated with this sentence	hhmmss.ss,	000000 to 235959.9	-
RMS value of the standard deviation of the range inputs to the navigation process	х.х,	0 —	-
Standard deviation of semi-major axis of error ellipse in meters	х.х,	0 —	1
Standard deviation of semi-minor axis of error ellipse in meters	х.х,	0 —	-
Orientation of semi-major axis of error ellipse in degrees from true North	х.х,	0 —	-
Standard deviation of latitude error in meters	х.х,	0 —	-
Standard deviation of longitude error in meters	х.х,	0 —	-
Standard deviation of altitude error in meters	х.х,	0 —	_
Checksum	*hh	-	-
End of sentence delimiter = CRLF	Always 0Dh 0Ah	_	_

GST Datagram

Note 1

The term "standard deviation of error" in the format description implies that the GST datagram was originally intended to contain statistics. Such a use may invalidate the intended use here, namely to derive a better quality measure than the HDOP in the GGA or DOP in the GGK datagram. Thus, the GST datagram should only be used if one is certain that this field contains the semi-major axis of the error ellipse for the latest fix, and not a statistical measure calculated over a number of fixes.

VTG Datagram

Data Description	Format	Valid range	Note
Start identifier = \$	Always 24h	-	-
Talker identifier	aa	Capital letters	-
Sentence formatter	Always VTG,	-	-
Course over ground, degrees true	x.x,T,	0 to 359.9	1
Course over ground, degrees magnetic	x.x,M,	0 to 359.9	1
Speed over ground, knots	x.x,N,	0 —	1
Speed over ground, km/h	x.x,K,	0 —	1
Mode indicator	a	A,D,E,M,S or N	-
Checksum	*hh	-	-
End of sentence delimiter = CRLF	Always 0Dh 0Ah	-	_

Only true course and the first valid speed field will be used.

Simrad 90 Datagram

Data Description	Format	Length	Valid range	Note
Start identifier = \$	Always 24h	1	-	-
Talker identifier	aa	2	Capital letters	-
Sentence formatter	Always S90,	4	-	-
Date of position	DDMMYY,	7	010100 to 311299	-
UTC of position as hour, minute, second, hundredth of second	hhmmssss,	9	00000000 to 23595999	-
Latitude in degrees, minutes and decimal minutes	XXXX.XXXX	9	0000.0000 to 9999.9999	A
Hemisphere identifier	a,	2	N or S	Α
Longitude in degrees, minutes and decimal minutes, or depth in meters	XXXXX.XXXX	10	00000.0000 to 18000.0000	A
Hemisphere or depth identifier	a,	2	E, W or D	Α
Northing or range in meters	xxxxxxxxxx,	12	00000000.0 to 999999999.9	В
Easting or depth in meters	xxxxxxx.x,	10	0000000.0 to 9999999.9	В
UTM zone number	XX,	3	01 to 60	-
User defined central meridian longitude or bearing	XXXXX.XXXX	10	00000.0000 to 35999.9999	С
Hemisphere or bearing identifier	а,	2	E, W, or B	С
System descriptor	Х,	2	0 to 7	1
Position fix quality indicator	Х,	2	0 to 9 and A to F	2
Speed over ground in m/s	XX.X,	5	00.0 to 99.9	3
Course over ground in degrees	XXX.X	5	000.0 to 359.9	3
End of sentence delimiter = ,CRLF	Always 2Ch 0Dh 0Ah	3	-	-

Note 1

Value of system descriptor defines content of datagram as follows. (Note that the Kongsberg Maritime EM 12, the EM 950 and the EM 1000 multibeam echo sounders will only accept values less than 3):

- **0** - The position is longitude latitude in global coordinates given in the fields noted A.

- **1** The position is Northing Easting on the Northern hemisphere given in the fields noted B. If the projection is defined to be UTM the UTM zone number or a user definable central meridian longitude may be given in the field noted C.
- 2 As for system descriptor equal to 1, but the position is on the Southern Hemisphere.
- **3** As for system descriptor equal to 0, but in addition the depth is given in the Easting field noted B.
- **4** As for system descriptor equal to 1, but in addition the depth is given in the longitude field noted A.
- **5** As for system descriptor equal to 2, but in addition the depth is given in the longitude field noted A.
- **6** The position is given relative to the vessel in a polar coordinate system with horizontal range and depth provided in the fields noted B and bearing re true North in the field noted C.
- 7 As for system descriptor 6, but the bearing is re the vessel centerline.

The position fix quality given in the position output datagram will be derived from the quality indicator (this differs from the original definition of the format) as follows (in m):

F	E	D	С	В	Α	9	8	7	6	5	4	3	2	1	0
0.01	0.02	0.05	0.1	0.2	0.5	1	2	5	10	20	50	100	200	500	1000

Note 3

If these fields have valid values they will be copied to equivalent fields in the position output datagram. They may be used in filtering of the positioning during postprocessing. (The original definition of the format had line heading in the course field and its use was to orient real-time displays).

Tide input

Data Description	Format	Valid range	Note
Start identifier = \$	Always 24h	-	-
Talker identifier	a	Capital letter	-
Sentence formatter	Always TIDE,	-	-
Date and time of prediction /	YYYYMMDDhhmm,	199601010000 to	-
measurement		999912312359	
Tide offset in meters and decimal meters	X.X	±327.66	1
Optional checksum	*hh	-	-
End of sentence delimiter = CRLF	Always 0Dh 0Ah	-	-

A negative number will be assumed to indicate an increase in sea level.

Depth or height input

Data Description	Format	Valid range	Note
Start identifier = *	Always 2Ah	-	-
Sentence identifier	ii	00 to 09	1
Talker identifier	ii	00 to 99	-
Depth or height in meters and decimal meters	x.x	-	2
End of sentence delimiter = CRLF	Always 0Dh 0Ah	_	_

Note 1

A sentence identifier equal to 00 is used for underwater vehicle depth, all other identifiers are customer specific (usually a datum height).

Note 2

If input is depth, it will be used in the depth output datagram to offset the transmit transducer depth. If input is height, which will usually imply a time or position variable datum height, its use will depend on the sentence identifier and will be implemented as required by a specific customer. Depth is positive downwards. Depths may be scaled and offset by operator settable constants:

output_depth [m] = scale_factor * (input_depth - offset)

Attitude data

Overview

Attitude data is generally accepted on one or more serial input port(s) as:

• roll, pitch, heave and heading on one port,

or

• roll, pitch and heave on one port and heading separately on another port.

The data update rate should be commensurate with the expected dynamics of the vessel (typically up to 100 Hz).

The acceptable format for roll, pitch, heave and optionally also heading is a 10 byte long message originally defined in the EM 1000 for use with digital motion sensors. It is supported by the following sensors:

- Applied Analytics POS/MV
- Photokinetics Octans
- Seatex MRU
- Seatex SeaPath
- TSS DMS-05

Heading will be accepted in the NMEA 0183 HDT format or in the format used by the Simrad Robertson SKR80(82) gyrocompass. A current loop to RS-232 converter may then be required. The Lemkuhl LR40(60) Scan Repeater format is also accepted, as it is the same as that of the SKR80 with the exception of an extra status byte. Note that if the attitude sensor is capable of reading the gyrocompass and transfer the heading to the attitude sensor datagram (if it does not measure heading itself), this is preferable to interfacing the gyrocompass directly to the system.

Roll, pitch and heading in the Sperry Marine MK-39 MOD2 Attitude and Heading Reference System format is also accepted. A second motion sensor must then be used to supply heave.

Attitude data may be supplied from more than one sensor. All data may be logged, but only one set as chosen by the operator will be used in real time.

EM Attitude input format

The EM attitude format is a 10-bytes long message defined as follows:

- Byte 1: Sync byte 1 = 00h, or Sensor status = 90h-AFh
- Byte 2: Sync byte 2 = 90h
- Byte 3: Roll LSB
- Byte 4: Roll MSB
- Byte 5: Pitch LSB
- Byte 6: Pitch MSB
- Byte 7: Heave LSB
- Byte 8: Heave MSB
- Byte 9: Heading LSB
- Byte 10: Heading MSB

where **LSB** = least significant byte, **MSB** = most significant byte.

All data are in 2's complement binary, with 0.01° resolution for roll, pitch and heading, and 1 cm resolution for heave.

- Roll is positive with port side up with $\pm 179.99^{\circ}$ valid range
- Pitch is positive with bow up with ±179.99° valid range
- Heave is positive up with ±9.99 m valid range
- Heading is positive clockwise with 0to 359.99° valid range.

Non-valid data are assumed when a value is outside the valid range.

How roll is assumed to be measured is operator selectable, either with respect to the horizontal plane (the Hippy 120 or TSS convention) or to the plane tilted by the given pitch angle (i.e. as a rotation angle around the pitch tilted forward pointing x-axis). The latter convention (called Tate-Bryant in the POS/MV documentation) is used inside the system in all data displays and in logged data (a transformation is applied if the roll is given with respect to the horizontal).

Note that heave is displayed and logged as positive downwards (the sign is changed) including roll and pitch induced lever arm translation to the system's transmit transducer.

This format has previously been used with the EM 950 and the EM 1000 with the first synchronisation byte always assumed to be zero. The sensor manufacturers have been requested to include sensor status in the format using the first synchronisation byte for this purpose. It is thus assumed that:

- 90h in the first byte indicates a valid measurements with full accuracy
- any value from **91h to 99h** indicates valid data with reduced accuracy (decreasing accuracy with increasing number)
- any value from **9Ah to 9Fh** indicates non-valid data but normal operation (for example configuration or calibration mode)
- and any value from **A0h to AFh** indicates a sensor error status

Sperry Mk.39 Attitude input format

The format is 18 bytes long, and it is organised as 9 words. The most significant byte of a word is transmitted first.

- Word 1 AA55h
- Word 2 Status and time
- Word 3 Heading
- Word 4 Roll
- Word 5 Pitch

- Word 6 Heading rate
- Word 7 Roll rate
- Word 8 Pitch rate
- Word 9 Checksum (MSB) and 1's complement of checksum (LSB)

All data are in 2's complement binary. Heading is given within $\pm 180^{\circ}$, roll and pitch within $\pm 90^{\circ}$. (Note however that the values $\pm 180^{\circ}$ and $\pm 90^{\circ}$ are not permitted, as these are one bit too high.)

Heading is measured with reference to true North, and positive when the bow points eastwards. Roll is per definition a rotation angle (Tate-Bryant) and positive when the starboard side goes up. Pitch is positive when the bow goes down.

HDT format

Data Description	Format	Valid range	Note
Start identifier = \$	Always 24h	-	-
Talker identifier	aa	Capital letters	-
Sentence formatter	Always HDT,	-	-
Heading, degrees true	x.x,T	0 to 359.9	-
Checksum	*hh	-	-
End of sentence delimiter = CRLF	Always 0Dh 0Ah	-	-

SKR80 format

The SKR80 sends out a stream of data with four bytes for each measurement. There is one byte for each digit:

- The first byte for the decimal degree (Example: xxx.X)
- The second for the degree (Example: xxX.x)
- The third for the 10's degree (Example: xXx.x)
- The fourth for the 100's degree (Example: Xxx.x)

The two uppermost bits of a byte are always zero, the next two bits give the digit, 00 for the decimal, 01 for the degree, 10 for the 10's degree, and 11 for the 100's degree. The lowest four bits give the digit value in 4-bit BCD format. As an example a heading of 234.5° will give the four bytes 05h 14h 23h 32h. The LR40 adds a fifth byte at the end for status with the two upper bits of the status byte set to 11 (11000000 for OK, 11001010 for alarm). This status byte is ignored.

Clock

The system clock is used to time stamp all data output. The clock may be set upon start of new survey or power-up on the Processing Unit (recommended source is a NMEA ZDA format datagram). The clock will drift, typically some seconds per day, unless it is synchronised to a 1 PPS (pulse per second) input signal (the clock millisecond counter will be set to zero whenever a pulse is received). A fully correct clock is only necessary if the output data are later to be combined with other time critical data logged or created by other systems, for example an accuracy of up to one minute would be necessary to apply tidal changes. If the timestamp supplied in the position input datagrams is to be used, it is imperative that the system clock is correctly set and that 1 PPS synchronisation is used.

ZDA format

Data Description	Format	Valid range	Note
Start identifier = \$	Always 24h	-	-
Talker identifier	aa	Capital letters	-
Sentence formatter	Always ZDA,	-	-
UTC	hhmmss.ss,	000000 to 235959.9	-
Day	XX,	01 to +31	-
Month	XX,	01 to +12	-
Year	XXXX,	0000 to 9999	-
Local zone hours	XX,	-13 to +13	1
Local zone minutes	XX	00 to +59	1
Optional checksum	*hh	-	-
End of sentence delimiter = CRLF	Always 0Dh 0Ah	-	-

Note 1

Local zone time is not used. An offset time may be entered by the operator to get the system clock to show a different time than UTC.

Sound Speed

Overview

A sound speed profile may be loaded into the Operator Station either on a serial line or on Ethernet. Formats previously used with existing Kongsberg Maritime echo sounders (Kongsberg Maritime ASCII and Binary Sound Velocity Profile input datagrams) will be accepted, but since their resolution in depth is limited to 1 m and the number of entries to 100, a new format given below without these limitations is recommended. This format is also accepted by the Kongsberg Maritime HIPAP and HPR underwater positioning systems (but not necessarily vice-versa). Note that a complete profile may be pieced together from several datagrams and edited with the Operator Station's Sound Speed Editor.

The new format is completely in ASCII and allows 9998 entries without limitations in resolution. In addition to depth and sound speed, it allows input of absorption coefficient, pressure, temperature and salinity or conductivity. The latter parameters may be used to calculate depth, sound speed and absorption coefficient. Use of a depth dependent absorption coefficient allows a more accurate determination of bottom backscatter strength.

Note that this datagram may also be logged as output, retaining information not included in the standard sound speed profile output datagram, such as where and when the profile has been taken.

Data Description	Format	Length	Valid range	Note
Start identifier = \$	Always 24h	1	-	-
Talker identifier	aa	2	Capital letters	-
Datagram identifier	Always Sxx,	4	S00to S53	1,2
Data set identifier	XXXXX,	6	00000 to 65535	_
Number of measurements $= N$	XXXX,	5	0001 to 9999	_
UTC time of data acquisition	hhmmss,	7	000000 to 235959	3
Day of data acquisition	XX,	3	00 to 31	3
Month of data acquisition	XX,	3	00 to 12	3
Year of data acquisition	XXXX,	5	0000 to 9999	3
N entries of the next 5 fields -	See note 4	·		
 Depth in m from water level or Pressure in MPa 	Х.Х,	2 –	0 to 12000.00 0 to 1.0000	-
 Sound velocity in m/s 	x.x,	1 -	1400 to 1700.00	-
- Temperature in °C	x.x,	1 –	-5 to 45.00	-

Kongsberg Maritime SSP format

Data Description	Format	Length	Valid range	Note
 Salinity in parts per thousand or Conductivity in S/m 	X.X,	1 –	0 to 45.00 0 to 7.000	-
Absorption coefficient in dB/km	x.x	0 —	0 to 200.00	-
Data set delimiter	CRLF	2	0Dh 0Ah	-
End of repeat cycle	·			
Latitude in degrees and minutes, plus optional decimal minutes	1111.11,	Variable 5-	0000 to 9000.0	5
Latitude – N/S	a,	2	N or S	5
Longitude in degrees and minutes, plus optional decimal minutes	ууууу.уу,	Variable 6-	00000 to 18000.0	5
Longitude – E/W	a,	2	E or W	5
Atmospheric pressure in MPa	X.X,	1 –	0 to 1.0000	5
User given comments	cc	Variable	-	5
Optional checksum	*hh	-	-	6
End of datagram delimiter = \CRLF	5Ch 0Dh 0Ah	3	-	-

The datagram identifier identifies what type of data is included. This is shown in the following table where D is depth, P is pressure, S is salinity, C is conductivity, c is sound speed, α is absorption coefficients, and L is latitude. The notation c(T,S) indicates for example that the sound speed is to be calculated from the temperature and salinity input data. When pressure is used, the atmospheric pressure must be given if the pressure is absolute, otherwise the pressure must be given re the sea level and the atmospheric pressure must be zero.

Identifier	Input data	Data to be used
S00	D, c	D, c
S10	D, c	D, c
S11	D , c , α	D , c , α
S12	D, c, T, S	D, c, α(D,T,S,L)
S20	D, T, S	D, c(D,T,S,L)
S21	D, Τ, S, α	D, c(D,T,S,L), α
S22	D, T, S	D, c(D,T,S,L), α(D,T,S,L)
S30	D, T, C	D, c(D,T,C,L)
S31	D, Τ, C, α	D, c(D,T,C,L), α
S32	D, T, C	D, c(D,T,C,L), α(D,T,C,L)
S40	P, T, S	D(P,T,S,L), c(P,T,S,L)
S41	Ρ , Τ , S , α	D(P,T,S,L), c(P,T,S,L), α

Identifier	Input data	Data to be used
S42	P, T, S	D(P,T,S,L), c(P,T,S,L), α(P,T,S,L)
S50	P, T, C	D(P,T,C,L), c(P,T,C,L)
S51	Ρ, Τ, C, α	D(P,T,C,L), c(P,T,C,L), α
S52	P, T, C	D(P,T,C,L), c(P,T,C,L) , α(P,T,C,L)

S00 is a special case because then the sound speed profile will be taken into use immediately without further operator intervention. The checksum is then mandatory and must be correct. Furthermore entries for zero depth and a deeper depth than expected during the survey must be included.

Note 3

Note that these fields have fixed length and leading zeros must be used.

Note 4

The depth or pressure field is always required while the other fields are optional except for those required by the datagram identifier. The field-delimiting commas must always be included even if the fields are empty.

Note 5

The positions, atmospheric pressure and comment fields are optional. Note that the option field must not include a $\$. It is recommended to include sensor type in the comment field.

Note 6

The checksum field is calculated between the \$ and the * delimiters by exclusive OR'ing of all bytes. The checksum is required for datagram S00, but is optional for the others.

AML CALC format

Sound speed profile data input in the CALC format is used by the Applied Microsystems Ltd. (AML) Total System Software package to support AML's complete range of sensors is also accepted.

This format is an ASCII format with a five line header plus a variable number of lines with data as follows:

Line 1: CALC, sn, date, depth increment, depth display

- sn is the sensor serial number
- date is current date taken from computer
- depth increment is logging depth increment

• depth display is depth units (meters or decibars)

Line 2: AML SOUND VELOCITY PROFILER S/N: xxxxx

Line 3: DATE:xxxxx TIME:xxxxx

• This line gives the Julian date and time at start of sensor logging

Line 4: DEPTH OFFSET(M): xxxx.x

• This line gives the pressure offset at sea level.

Each line of data contains three numbers:

- depth (in meters)
- sound velocity (in m/s)
- temperature (in degrees Celsius)

Line 5: DEPTH(M) VELOCITY (M/S) TEMPERATURE (_C)

The numbers are separated by a space, and each line is terminated with a linefeed (LF). The numbers shall all include a decimal point (xxx.x xxx.x xx.xLF). The data are terminated by a line with three zeros with two spaces between the zeros (0 0 0).

AML Smart Sensor format

The AML Smart SV&P sensor and later the SVPlus sensor may be used directly for sound speed profile input on serial line to the Operator Station. Both these sensors may also be used to measure the sound speed at the transducer depth continuously during the surveying.

A measurement is requested from a smart sensor by issuing the word 'scan' as four ASCII characters terminated by CR. The reply from the SV sensor is a string of ASCII characters:

'S'CRLF xxxx.x CRLF>

where xxxx.x is the measured sound speed in m/s (in bytes 5-11). From the SV&P sensor the received string is:

'S'CRLF ±xxx.xx xxxx.x CRLF>

where the first number is the pressure in decibars relative to the surface and the second sound speed in m/s (in bytes 13-19).

Smart sensors with autonomous output may also be used, both P&SV (sound speed with pressure) and T&SP (sound speed with temperature).

The P&SV format is:

±xxx.xx xxxx.x CRLF

The T&SP format is:

±xx.xxx xxxx.x CRLF

The last field in both of these formats give the sound speed and the first field either pressure in decibars or temperature in degrees Celsius.

Depth input from single beam echo sounder

Overview

Depth datagrams from a single beam echo sounder are accepted for display and logging on the system. The following formats are supported:

- NMEA 0183 DBS
- NMEA 0183 DPT
- binary datagrams from the Kongsberg Maritime EA 500 echo sounder series.

DBS format

Data Description	Format	Valid range	Note
Start identifier = \$	Always 24h	-	-
Talker identifier	aa	Capital letters	-
Sentence formatter	Always DBS,	-	-
Depth in feet	x.x,f,	0.1 —	1
Depth in meters	x.x,M,	0.1 –	1
Depth in fathoms	x.x,F	0.1 –	1
Checksum	*hh	-	-
End of sentence delimiter = CRLF	Always 0Dh 0Ah	-	-

Note 1

The decoding priority will be meter field, feet field and fathom field with the depth value extracted from the first field with valid data.

DPT format

Data Description	Format	Valid range	Note
Start identifier = \$	Always 24h	-	-
Talker identifier	aa	Capital letters	-
Sentence formatter	Always DPT,	-	-
Depth in meters from the transducer	х.х,	0.1 –	-
Offset of transducer from waterline in meters	х.х,	0 —	1
Maximum range scale in use	X.X	_	-

Data Description	Format	Valid range	Note
Checksum	*hh	-	-
End of sentence delimiter = CRLF	Always 0Dh 0Ah	-	-

A negative value implying that the offset is from the keel should not be used.

EA 500 format

Data Description	Format	Valid range	Note
Start identifier = D	Always 34h	-	-
Channel identifier	х,	1 to 3	1
Time as HHMMSShh	XXXXXXX,	00000000 to 23595999	1
Depth in meters from the transducer	32 bit IEEE 754 floating point	0.1 —	1
Bottom backscattering strength in dB	32 bit IEEE 754 floating point	-	-
Transducer number	32 bit integer	-	-
Athwartship slope in degrees	32 bit IEEE 754 floating point	-	-

Note 1

Only the channel identifier, depth and time will be decoded by the system. The least significant byte is transmitted first (the Intel convention).

Note

The datagram must be sent on Ethernet to UDP port number 2200 *on the Operator Station.*

Remote control

Overview

A Remote Control datagram has been implemented to allow:

- the multibeam echo sounder to start logging on remote command.
- the multibeam echo sounder to send out parameter and sound speed profile datagrams as a response to the remote command.
- the survey line numbers to be set from a remote location.

Note that the parameter and sound speed profile datagrams are always sent out when logging is started or any changes are made to the parameters or sound speed. They may also be sent out regularly at operator specified intervals. The datagram currently only allows survey related parameters to be transferred to the system. It will later be expanded to allow remote setting of all installation parameters, and then basically as a copy of the standard start/stop datagram with identical conventions with regard to order (which is not important), but requiring only the parameters actually to be set.

Data Description	Format	Valid range	Note
Start identifier = \$	Always 24h	-	-
Talker identifier	aa	Capital letters	-
Datagram identifier	Rxx,	R00 to R20	1
EM model number	EMX=dddd,	-	2
Responsible operator	ROP=aa,	-	-
Survey identifier	SID=aa,	-	-
Survey line number	PLN=dd,	-	-
Survey line identifier (planned line no)	PLL=dd,	-	-
Comment	COM=aa	-	-
Optional checksum	*hh	-	-
End of datagram delimiter = \CRLF	5Ch 0Dh 0Ah	-	-

Note 1

Rxx defines what action the system is to take with respect to pinging and logging of data in addition to changes in the parameters. Note that logging of survey data on local storage is not affected, this is determined by operator control from the menu only.

- R00 System to stop pinging (and logging if on)
- R10 System to stop all logging (but continue or start pinging).
- R11 System to start logging on new line to both local and remote
- R12 System to star logging on new line but only to local storage
- R13 System to start logging on new line but only to remote
- R20 System to send installation parameter datagram and sound speed profile datagrams to remote

Note 2

The EM model number will be required when parameter changes are made with respect to transducer location or system gain settings.

Introduction

Output datagrams are usually logged to disk or tape on the EM Series Operator Station. The output datagrams may also be exported to user provided programs on the Operator Station or on an external Ethernet network using UDP protocol (remote logging). An NMEA DPT depth datagram may be exported on a serial line.

The output datagrams are mostly in binary format using signed or unsigned integer numbers with lengths of 1, 2 or 4 bytes. All binary data will presently be big endian.

As this is subject to modifications, we recommend that software written to decode EM Series data includes a check for the byte ordering with a provision for byte swapping. Suitable data fields to check on are the length field at the start of the datagram, the EM Series model number field and possibly the date and time fields.

The basic output datagram structure established with the EM 100 echo sounder is retained.

- All datagrams (except the NMEA DPT datagram) start with STX, datagram type and time tag, and end with ETX and checksum (sum of bytes between STX and ETX). In addition the total length of the datagram (*not including the length field*) will precede the STX byte, given as a four byte binary number.
- The length field is only included when logging to tape and/or disk, but not for datagrams logged to a remote location. The length can then be derived from the network software. Systems logging data remotely should add this length at the start of each datagram. This length is required if the data are to be used with Kongsberg Maritime post-processing systems.
- The time stamp resolution has been increased to 1 millisecond and now includes the century, but as a consequence the time stamp is now binary and not ASCII as implemented previously. The date is given as 10000*year(4 digits) + 100*month + day, for example 19950226 for February 26, 1995. All date fields in the output datagrams use this format. A time is usually given (in milliseconds) from midnight.

Note

- The datagrams identify the multibeam echo sounder model and its serial number. The system model number is 120 for the EM 120, 300 for the EM 300, etc. For the EM 3000D (the dual head system) the model number was originally given as 3002 and the serial number is that of Sonar Head number 1. However in the depth datagram model numbers 3003-3008 are now used to also identify the actual transmit and sampling frequencies of the two heads. If only one head is activate on the EM 3000D, it is coded as a single head system.
- Due care has been taken to include all parameters needed in postprocessing in the relevant datagrams, with a minimum of data duplication. Where resolution of a data field is variable, a resolution descriptor is included.
- Invalid data are always identified by the highest positive number allowed in a field unless otherwise noted.
- A real-time parameter datagram has been added to enable logging of parameters not used in postprocessing, but which may be important in checking the quality of the logged data, or to allow tracing of reasons for possible malfunctions.
- Attitude data as time continuous records and raw ranges and beam pointing angles are logged to allow eventual postprocessing corrections. The logged attitudes are valid at the transmit transducer, and are corrected for any sensor offsets.

Data Description	Format	Valid range	Note
Number of bytes in datagram	4U	-	-
Start identifier = STX (Always 02h)	1U	-	-
Type of datagram = D(epth data) (Always 44h)	1U	-	-
EM model number (Example: EM 3000 = 3000)	2U	-	4
Date = year*10000 + month*100 + day (Example: Feb 26, 1995 = 19950226)	4U	-	-
Time since midnight in milliseconds (Example: 08:12:51.234 = 29570234)	4U	0 to 86399999	-
Ping counter (sequential counter)	2U	0 to 65535	-
System serial number	2U	100 -	-
Heading of vessel in 0.01°	2U	0 to 35999	-
Sound speed at transducer in dm/s	2U	14000 to 16000	-
Transmit transducer depth re water level at time of ping in cm	2U	0 to 65536	1

Depth

Data Description	Format	Valid range	Note
Maximum number of beams possible	1U	48 –	-
Number of valid beams = N	1U	1 to 254	-
z resolution in cm	1U	1 to 254	_
x and y resolution in cm	1U	1 to 254	_
Sampling rate (f) in Hz	2U	300 to 30000	3
or Depth difference between sonar heads in the EM 3000D	2S	-32768 to 32766	4
Repeat cycle – N entries of :	16*N	-	_
 Depth (z) from transmit transducer (unsigned for EM 120 and EM 300) 	2S or 2U	-32768 to +32766 or 1 to 65534	2
 Acrosstrack distance (y) 	2S	-32768 to 32766	2
- Alongtrack distance (x)	2S	-32768 to 32766	2
– Beam depression angle in 0.01°	2S	-11000 to 11000	3
– Beam azimuth angle in 0.01°	2U	0 to 56999	3
- Range (one-way travel time)	2U	0 to 65534	3
- Quality factor	1U	0 to 254	5
- Length of detection window (samples/4)	1U	1 to 254	-
 Reflectivity (BS) in 0.5 dB resolution) (Example: -20 dB = 216) 	1S	-128 to +126	-
– Beam number	1U	1 to 254	6
End of repeat cycle			
Transducer depth offset multiplier	1S	-1 to +17	1
End identifier = ETX (Always 03h)	1U	-	-
Check sum of data between STX and ETX	2U	-	-

The transmit transducer depth plus the depth offset multiplier times 65536 cm should be added to the beam depths to derive the depths re the water line. The depth offset multiplier will usually be zero, except when the EM 2000/3000 Sonar Head is on an underwater vehicle at a depth larger than 655.36 m. Note that the offset multiplier will be negative (-1) if the actual heave is large enough to bring the transmit transducer above the water line. This may represent a valid situation, but may also be due to an erroneously set installation depth of either the transducer or the water line.

Note 2

The beam data are given re the transmit transducer or sonar head depth and the horizontal location of the active positioning system's antenna. Heave, roll, pitch, sound speed at the transducer depth and ray bending through the water column have been applied. On the EM 1002/2000/3000 the beam depths must be regarded as signed values to take into account beams which may be going upwards. On the EM 120/300 the beam depths are always positive and the values are therefore unsigned.

Note 3

The range, beam depression angle (positive downwards and 90° for a vertical beam) and beam azimuth angle (re vessel centerline) are given relative to the transducer (sonar head) at the ping transmit time. Heave, roll, pitch and sound speed at the transducer depth have been applied, but not ray bending. These values may thus be directly used for a new ray bending calculation with a revised sound speed profile to generate new sounding depths and positions without any need for using attitude data. The range resolution in time is the inverse of the range sampling rate (i.e. nominally equivalent to about 70 µs for the EM 3000).

Note that if the data need to be reprocessed with a new sound speed at the transducer depth or new roll, pitch or heave values, full reprocessing starting with the raw range and beam angle data is required. Attitude data is also required in this reprocessing, and both these data types will in the future be logged as standard.

If the beam azimuth angle has a value larger than 35999, the beam pointing angle has replaced the beam depression angle, and the raw two-way travel time has replaced the one-way heave and beam angle corrected travel time. The transmit tilt angle plus 54000 is given in the beam azimuth angle field. The use of this data definition is available on remote output to a port named as "RawDepth..." for use by other systems which do their own attitude and sound speed processing.

Note 4

In an EM 3000D the transmit transducer depth is that of Sonar Head number 1, taking into account the depth offset multiplier as described in note 1. The range multiplier is replaced by the difference in depth between Sonar Head number 1 and 2, i.e. head 2 depth is equal to head 1 depth (possibly modified with depth offset multiplier) plus the depth difference. The range sampling rates in Hz of the two heads is given through the EM model number according to the following table:

EM model number	3003	3004	3005	3006	3007	3008
Sonar Head 1	13956	14293	13956	14621	14293	14621
Sonar Head 2	14621	14621	14293	14293	13956	13956

Previously the model number of the EM 3000D was given as 3002 with head sample rates of 13956 and 14621 Hz respectively. The head depths in this case should be assumed to be equal, and although the mathematical derivation of final beam depths would otherwise be the same as described above, the transmit transducer depth was not actually exactly that of the sonar heads.

Note 5

The quality number's upper bit signifies whether amplitude (0) or phase (1) detection has been used. If amplitude the 7 lowest bits give the number of samples used in the centre of gravity calculation. If phase the second highest bit signifies whether a second (0) or first (1) order curve fit has been applied to determine the zero phase range, and the 6 lowest bits indicates the quality of the fit (actually the normalized variance of the fit re the maximum allowed, i.e. with a lower number the better the fit).

Note 6

Beam 128 is the first beam on the second sonar head in an EM 3000D dual head system.

Data Description	Format	Valid range	Note
Number of bytes in datagram	4U	-	-
Start identifier = STX (Always 02h)	1U	-	-
Type of datagram = F (Always 46h)	1U	-	-
EM model number (Example: EM 3000 = 3000)	2U	-	-
Date = year*10000 + month*100 + day (Example: Feb 26, 1995 = 19950226)	4U	-	-
Time since midnight in milliseconds (Example: 08:12:51.234 = 29570234)	4U	0 to 86399999	-
Ping counter (sequential counter)	2U	0 to 65535	-
System serial number	2U	100 —	-
Maximum number of beams possible	1U	48 —	-
Number of valid beams = N	1U	1 to 254	-
Sound speed at transducer in dm/s	2U	14000 to 16000	-
Repeat cycle – N entries of :	8*N	-	
 Beam pointing angle in 0.01° 	2S	-11000 to 11000	1
– Transmit tilt angle in 0.01°	2U	-2999 to 2999	1
 Range (two-way travel time) 	2U	0 to 65534	1
- Reflectivity (BS) in 0.5 dB resolution	1S	-128 to 126	-
– Beam number	1U	1 to 254	-

Raw range and beam angle

Data Description	Format	Valid range	Note
End of repeat cycle			
Spare (Always 0)	1U	-	-
End identifier = ETX (Always 03h)	1U	-	-
Check sum of data between STX and ETX	2U	-	-

The beam pointing angle is positive to port and the transmit tilt angle is positive forwards for a normally mounted system looking downwards. The range resolution in time is the inverse of the range sampling rate given in the depth datagrams.

Seabed image

Data Description	Format	Valid range	Note
Number of bytes in datagram	4U	-	-
Start identifier = STX (Always 02h)	1U	-	-
Type of datagram = $S(eabed image data)$ (Always 53h)	1U	-	-
EM model number (Example: EM 3000 = 3000)	2U	-	-
Date = year*10000 + month*100 + day (Example: Feb 26, 1995 = 19950226)	4U	-	-
Time since midnight in milliseconds (Example: 08:12:51.234 = 29570234	4U	0 to 86399999	-
Ping counter (sequential counter)	2U	0 to 65535	-
System serial number	2U	100 —	-
Mean absorption coefficient in 0.01 dB/km	2U	1 to 20000	1
Pulse length in μ s	2U	50 —	1
Range to normal incidence used to correct sample amplitudes in no. of samples	2U	1 to 16384	-
Start range sample of TVG ramp if not enough dynamic range (0 else)	2U	0 to 16384	-
Stop range sample of TVG ramp if not enough dynamic range (0 else)	2U	0 to 16384	-
Normal incidence BS in dB (BSN) (Example: -20 dB = 236)	1S	-50 to 10	-
Oblique BS in dB (BSO) (Example: -1 dB = 255)	1S	-60 to 0	-
Tx beamwidth in 0.1°	2U	1 to 300	-
TVG law crossover angle in 0.1°	1U	20 to 300	-
Number of valid beams (N)	1U	1 to 254	-
Repeat cycle – N entries of :	6*N	-	
– beam index number	1U	0 to 253	2
- sorting direction	1S	-1 or 1	3
 number of samples per beam = Ns 	2U	1 –	-

Data Description	Format	Valid range	Note
- centre sample number	2U	1 –	4
End of repeat cycle			
Repeat cycle – <i>S</i> Ns entries of:	ΣNs	-	
 Sample amplitudes in 0.5 dB (Example: -30 dB = 196) 	1S	-128 to 126	-
End of repeat cycle			
Spare byte if required to get even length (Always 0 if used)	0–1U	-	
End identifier = ETX (Always 03h)	1U	-	-
Check sum of data between STX and ETX	2U	-	-

These fields have earlier had other definitions.

Note 2

The beam index number is the beam number - 1.

Note 3

The first sample in a beam has lowest range if 1, highest if -1. Note that the range sampling rate is defined by the sampling rate in the depth output datagram and that the ranges in the seabed image datagram are all two-way from time of transmit to time of receive

Note 4

The centre sample number is the detection point of a beam.

Central beams echogram

Data Description	Format	Valid range	Note
Number of bytes in datagram	4U	-	-
Start identifier = STX (Always 02h)	1U	-	-
Type of datagram = K (Always 4Bh)	1U	-	-
EM model number (Example: EM 3000 = 3000)	2U	-	-
Date = year*10000 + month*100 + day (Example: Feb 26, 1995 = 19950226)	4U	-	-
Time since midnight in milliseconds (Example: 08:12:51.234 = 29570234)	4U	0 to 86399999	-
Ping counter (sequential counter)	2U	0 to 65535	-
System serial number	2U	100 —	-
Mean absorption coefficient in 0.01 dB/km	2U	1 to 20000	1
Pulse length in μ s	2U	50 —	1
Range to normal incidence used in TVG	2U	1 to 16384	1
Start range sample of TVG ramp if not enough dynamic range (0 else)	2U	0 to 116384	-

Data Description	Format	Valid range	Note
Stop range sample of TVG ramp if not enough dynamic range (0 else)	2U	0 to 16384	-
Normal incidence BS in dB (BSN) (Example: -20 dB = 236)	1S	-50 to +10	1
Oblique BS in dB (BSO) (Example: -1 dB = 255)	1S	-60 to 0	1
Tx beamwidth in 0.1°	2U	1 to 300	1
TVG law crossover angle in 0.1°	1U	20 to 300	1
Number of included beams (N)	1U	1 –	-
Repeat cycle – N entries of :	6*N	-	
– beam index number	1U	0 to 253	2
- spare byte to get even length (Always 0)	1U	-	-
- number of samples per beam = Ns	2U	1 -	-
- start range in samples	2U	1 -	3
End of repeat cycle			
Repeat cycle – <i>2</i> Ns entries of:	ΣNs	-	
 Sample amplitudes in 0.5 dB (Example: -30 dB = 196) 	1S	-128 to +126	-
End of repeat cycle			
Spare byte if required to get even length (Always 0 if used)	0–1U	-	-
End identifier = ETX (Always 03h)	1U	-	-
Check sum of data between STX and ETX	2U	-	-

The sample amplitudes are not corrected in accordance with the detection parameters derived for the ping, as is done for the seabed image data.

Note 2

The beam index number is the beam number - 1.

Note 3

The range for which the first sample amplitude is valid for this beam given as a two-way range. The detection range is given in the raw range and beam angle datagram. Note that data are provided regardless of whether a beam has a valid detection or not.

Position

Data Description	Format	Valid range	Note
Number of bytes in datagram	4U	-	-
Start identifier = STX (Always 02h)	1U	-	-
Type of datagram = P(osition data) (Always 050h)	1U	-	_

Data Description	Format	Valid range	Note
EM model number (Example: EM 3000 = 3000)	2U	-	-
Date = year*10000 + month*100 + day (Example: Feb 26, 1995 = 19950226)	4U	-	-
Time since midnight in milliseconds (Example: 08:12:51.234 = 29570234)	4U	0 to 86399999	-
Position counter (sequential counter)	2U	0 to 65535	-
System / serial number	2U	100 —	-
Latitude in decimal degrees*20000000 (negative if southern hemisphere) (Example: $32^{\circ}34' S = -651333333$)	4S	-	-
Longitude in decimal degrees*10000000 (negative if western hemisphere) (Example: $110.25^{\circ} E = 1102500000$)	4S	-	-
Measure of position fix quality in cm	2U	-	1
Speed of vessel over ground in cm/s	2U	0 —	1
Course of vessel over ground in 0.01°	2U	0 to 35999	1
Heading of vessel in 0.01°	2U	0 to 35999	-
Position system descriptor	1U	1 to 254	2
Number of bytes in input datagram	1U	- 254	-
Position input datagram as received	Variable	-	3
Spare byte if required to get even length (Always 0 if used)	0–1U	-	-
End identifier = ETX (Always 03h)	1U	-	-
Check sum of data between STX and ETX	2U	-	_

These data will be valid only if available as input.

Note 2

The position system descriptor shows which source this data is from and its real-time use by bit coding:

- xxxx xx01 position system no 1
- xxxx xx10 position system no 2
- xxxx xx11 position system no 3
- 10xx xxxx the position system is active, system time has been used
- 11xx xxxx the position system is active, input datagram time has been used
- xxxx 1xxx the position may have to be derived from the input datagram which is then in SIMRAD 90 format.

Note 3

Complete input datagram except header and tail (such as NMEA 0183 \$ and CRLF).

Data Description	Format	Valid range	Note
Number of bytes in datagram	4U	-	-
Start identifier = STX (Always 02h)	1U	-	-
Type of datagram = h(eight data) (Always 068h)	1U	-	-
EM model number (Example: EM 3000 = 3000)	2U	-	-
Date = year*10000 + month*100 + day (Example: Feb 26, 1995 = 19950226)	4U	-	-
Time since midnight in milliseconds (EXample: 08:12:51.234 = 29570234)	4U	0 to 86399999	-
Height counter (sequential counter)	2U	0 to 65535	-
System serial number	2U	100 -	_
Height in cm	4S	-4294967296 to 4294967295	-
Heigth type	1U	0 to 99	1
End identifier = ETX (Always 03h)	1U	-	-
Check sum of data between STX and ETX	2U	-	-

Height

Note 1

The height type is as given in the height input datagram unless it is zero. Then the height is derived from the GGK or GGA datagram and is the height of the water level re the vertical datum (possibly motion corrected).

Tide

Data Description	Format	Valid range	Note
Number of bytes in datagram	4U	-	-
Start identifier = STX (Always 02h)	1U	-	-
Type of datagram = $T(\text{ide data})$ (Always 054h)	1U	-	-
EM model number (Example: EM 3000 = 3000)	2U	-	-
Date = year*10000 + month*100 + day (Example: Feb 26, 1995 = 19950226)	4U	-	-
Time since midnight in milliseconds (Example: 08:12:51.234 = 29570234)	4U	0 to 86399999	-
Tide counter (sequential counter)	2U	0 to 65535	-
System serial number	2U	100 -	-
Date = year*10000 + month*100 + day (from input datagram) (Example: Feb 26, 1995 = 19950226)	4U	-	-
Time since midnight in milliseconds (from input datagram) (Example: 08:12:51.234 = 29570234)	4U	0 to 86399999	-
Tidal offset in cm	2S	-32768 to 32766	-
Spare (Always 0)	1U	-	-
End identifier = ETX (Always 03h)	1U	-	-
Check sum of data between STX and ETX	2U	-	-

Attitude

Data Description	Format	Valid range	Note
Number of bytes in datagram	4U	-	-
Start identifier = STX (Always 02h)	1U	-	-
Type of datagram = A(ttitude data) (Always 041h)	1U	-	-
EM model number (Example: EM 3000 = 3000)	2U	-	-
Date = year*10000 + month*100 + day (at start of data record) (Example: Feb 26, 1995 = 19950226)	4U	-	-
Time since midnight in milliseconds (at start of data record) (Example: 08:12:51.234 = 29570234)	4U	0 to 86399999	-
Attitude counter (sequential counter)	2U	0 to 65535	-
System serial number	2U	100 —	-
Number of entries = N	2U	1 –	-
Repeat cycle – N entries of:	12*N	-	•

Data Description	Format	Valid range	Note
- Time in milliseconds since record start	2U	0 to 65534	-
– Sensor status	2U	-	1
– Roll in 0.01°	2S	-18000 to 18000	-
– Pitch in 0.01°	2S	-18000 to 18000	-
– Heave in cm	2S	-1000 to 10000	-
- Heading in 0.01°	2U	0 to 35999	-
End of repeat cycle			
Sensor system descriptor	1U	-	2
End identifier = ETX (Always 03h)	1U	-	-
Check sum of data between STX and ETX	2U	-	-

The sensor status will be copied from the input datagram's two sync bytes if the sensor uses the EM format, and from the sensor's status word if it is a Sperry Mk39. See the input format description for further details.

Note 2

The sensor system descriptor will show which sensor the data is derived from, and which of the sensor's data have been used in real time by bit coding:

- xx01 xxxx motion sensor number 1
- xx10 xxxx motion sensor number 2
- xxxx xxx1 heading from the sensor is active
- xxxx xx0x roll from the sensor is active
- xxxx x0xx pitch from the sensor is active
- xxxx 0xxx heave from the sensor is active

Heading

Data Description	Format	Valid range	Note
Number of bytes in datagram	4U	-	-
Start identifier = STX (Always 02h)	1U	-	-
Type of datagram = H(eading data) (Always 048h)	1U	-	-
EM model number (Example: EM 3000 = 3000)	2U	-	-
Date = year*10000 + month*100 + day (at start of data record) (Example: Feb 26, 1995 = 19950226)	4U	-	-
Time since midnight in milliseconds (at start of data record) (System: 08:12:51.234 = 29570234)	4U	0 to 86399999	-

Data Description	Format	Valid range	Note
Heading counter (sequential counter)	2U	0 to 65535	-
System serial number	2U	100 —	-
Number of entries $=$ N	2U	1 –	-
Repeat cycle – N entries of:	4*N	-	-
- Time in milliseconds since record start	2U	0 to 65534	-
– Heading in 0.01°	2U	0 to 35999	-
End of repeat cycle			
Heading indicator (active or not) $(0 = inactive)$	1U	-	-
End identifier = ETX (Always 03h)	1U	-	-
Check sum of data between STX and ETX	2U	-	-

Mechanical transducer tilt

Data Description	Format	Valid range	Note
Number of bytes in datagram	4U	-	
Start identifier = STX (Always 02h)	1U	-	
Type of datagram = J (Always 4Ah)	1U	-	
EM model number (Example: EM 1002 = 1002)	2U	-	
Date = year*10000 + month*100 + day (at start of data record) (Example: Feb 26, 1995 = 19950226)	4U	-	-
Time since midnight in milliseconds (at start of data record) (Example: 08:12:51.234 = 29570234)	4U	0 to 86399999	-
Tilt counter (sequential counter)	2U	0 to 65535	-
System serial number	2U	100	-
Number of entries = N	2U	1 –	-
Repeat cycle – N entries of:	4*N	-	
 Time in milliseconds since record start 	2U	0 to 65534	-
– Tilt in 0.01 degrees	2S	-1499 to +1499	1
End of repeat cycle	•	•	•
Spare (Always zero)	1U	-	_
End identifier = ETX (Always 03h)	1U	-	-
Check sum of data between STX and ETX	2U	-	-

Note 1

This tilt angle is the measured mechanical tilt of a hull unit such as that often supplied with the EM 1002. It is positive when the transducer is tilted forwards.

Clock

Data Description	Format	Valid range	Note
Number of bytes in datagram	4U	-	-
Start identifier = STX (Always 02h)	1U	-	-
Type of datagram = C(lock data) (Always 043h)	1U	-	-
EM model number (Example: EM 3000 = 3000)	2U	-	-
Date = year*10000 + month*100 + day (of EM clock) (Example: Feb 26, 1995 = 19950226)	4U	_	-
Time since midnight in milliseconds (of EM clock) (Example: 08:12:51.234 = 29570234)	4U	0 to 86399999	-
Clock counter (sequential counter)	2U	0 to 65535	-
System serial number	2U	100 —	-
Date = year*10000 + month*100 + day (from external clock input) (Example: Feb 26, 1995 = 19950226)	4U	-	_
Time since midnight in milliseconds (from external clock datagram) (Example: 08:12:51.234 = 29570234)	4U	0 to 86399999	-
1 PPS use (active or not) (0 = inactive)	1U	-	1
End identifier = ETX (Always 03h)	1U	-	-
Check sum of data between STX and ETX	2U	-	-

Note 1

Shows if the system clock is synchronised to an external 1 PPS signal or not.

Surface sound speed

Data Description	Format	Valid range	Note
Number of bytes in datagram	4U	-	-
Start identifier = STX (Always 02h)	1U	-	-
Type of datagram = G (Always 047h)	1U	-	-
EM model number (Example: EM 3000 = 3000)	2U	-	-
Date = year*10000 + month*100 + day (at start of data record) (Example: Feb 26, 1995 = 19950226)	4U	-	-
Time since midnight in milliseconds (at start of data record) (Example: 08:12:51.234 = 29570234)	4U	0 to 86399999	-
Sound speed counter (sequential counter)	2U	0 to 65535	-
System serial number	2U	100 —	-
Number of entries = N	2U	1 -	-
Repeat cycle – N entries of:	4*N	-	•

Data Description	Format	Valid range	Note
 Time in seconds since record start 	2U	0 to 65534	-
 Sound speed in dm/s (including offset) 	2U	14000 to 15999	-
End of repeat cycle			
Spare (Always 0)	1U	-	_
End identifier = ETX (Always 03h)	1U	-	-
Check sum of data between STX and ETX	2U	-	-

Sound speed profile

This datagram will contain the profile actually used in the real time raybending calculations to convert range and angle to xyz data. It will usually be issued together with the installation parameter datagram.

Note The format as given below has been changed from previous editions of this manual. The former format is identified by its type which was "V" (056h). The previous format had 2 byte long fields for depth and sound speed, this is now 4 bytes.

Data Description	Format	Valid range	Note
Number of bytes in datagram	4U	-	-
Start identifier = STX (Always 02h)	1U	-	-
Type of datagram = U (Always 055h)	1U	-	-
EM model number (Example: EM 3000 = 3000)	2U	-	-
Date = year*10000 + month*100 + day (at start of use) (Example: Feb 26, 1995 = 19950226)	4U	_	-
Time since midnight in milliseconds (at start of use) (Example: 08:12:51.234 = 29570234)	4U	0 to 86399999	-
Profile counter (sequential counter)	2U	0 to 65535	-
System serial number	2U	100 —	-
Date = year*10000 + month*100 + day (when profile was made) (Example: Feb 26, 1995 = 19950226)	4U	_	-
Time since midnight in milliseconds (when profile was made) (Example: 08:12:51.234 = 29570234)	4U	0 to 86399999	-
Number of entries = N	2U	1 –	-
Depth resolution in cm	2U	1 to 254	-
Repeat cycle – N entries of:	8*N	-	-
- Depth	4U	0 to 1200000	-
 Sound speed in dm/s 	4U	14000 to 17000	-

Data Description	Format	Valid range	Note
End of repeat cycle			
Spare byte to get even length (Always 0)	1U	-	-
End identifier = ETX (Always 03h)	1U	-	-
Check sum of data between STX and ETX	2U	-	-

Kongsberg Maritime SSP output

This datagram will contain the profile as received as input, and is logged as is to enable use of its data in postprocessing. The real time use of its data is decided by the operator, the sound speed profile actually being used is given by the sound speed profile output datagram (see above).

Data Description	Format	Valid range	Note
Number of bytes in datagram	4U	-	-
Start identifier = STX (Always 02h)	1U	-	-
Type of datagram = W (Always 057h)	1U	-	_
EM model number (Example: EM 3000 = 3000)	2U	_	-
Date = year*10000 + month*100 + day (Example: Feb 26, 1995 = 19950226)	4U	_	-
Time since midnight in milliseconds (Example: 08:12:51.234 = 29570234)	4U	0 to 86399999	-
SSP counter (sequential counter)	2U	0 to 65535	-
System serial number	2U	100 —	-
Input datagram starting with Sentence formatter and ending with Comment	Variable	-	-
Spare byte if required to get even length (Always 0 if used)	0 – 1U	-	-
End identifier = ETX (Always 03h)	1U	-	_
Check sum of data between STX and ETX	2U	-	-

Single beam echo sounder depth

Data Description	Format	Valid range	Note
Number of bytes in datagram	4U	-	-
Start identifier = STX (Always 02h)	1U	-	-
Type of datagram = E(cho sounder data) (Always 045h)	1U	-	-
EM model number (Example: EM 3000 = 3000)	2U	-	-
Date = year*10000 + month*100 + day (of EM clock) (Example: Feb 26, 1995 = 19950226)	4U	-	-
Time since midnight in milliseconds (of EM clock) (Example: 08:12:51.234 = 29570234)	4U	0 to 86399999	-

Data Description	Format	Valid range	Note
Echo sounder counter (sequential counter)	2U	0 to 65535	-
System serial number	2U	100 —	-
Date = year*10000 + month*100 + day (from input datagram if available) (Example: Feb 26, 1995 = 19950226)	4U	-	-
Time since midnight in milliseconds (from input datagram if available) (Example: 08:12:51.234 = 29570234)	4U	0 to 86399999	-
Echo sounder depth from waterline in cm	4U	0 to 1200000	_
Source identifier (S, T, 1, 2 or 3)	ASCII	_	1
End identifier = ETX (Always 03h)	1U	-	-
Check sum of data between STX and ETX	2U	-	—

Identifies the source datagram type, i.e. NMEA DBS, NMEA DPT or EA 500 series channel 1-3 respectively.

Runtime parameter

Data Description	Format	Valid range	Note
Number of bytes in datagram	4U	-	-
Start identifier = STX (Always 02h)	1U	-	-
Type of datagram = R(untime parameter) (Always 052h)	1U	-	-
EM model number /Example: EM 3000 = 3000)	2U	_	-
Date = year*10000 + month*100 + day (Example: Feb 26, 1995 = 19950226)	4U	_	-
Time since midnight in milliseconds (Example: 08:12:51.234 = 29570234)	4U	0 to 86399999	-
Ping counter	2U	0 to 65535	-
System serial number	2U	100 —	-
Operator Station status	1U	-	1
Processing Unit status	1U	-	1
BSP status	1U	-	1
Sonar Head or Transceiver status	1U	-	1
Mode	1U	1 –	2
Filter identifier	1U	0 to 254	3
Minimum depth in m	2U	0 to 10000	-
Maximum depth in m	2U	1 to 12000	-
Absorption coefficient in 0.01 dB/km	2U	1 to 20000	4
Transmit pulse length in μ s	2U	1 to 50000	-
Transmit beamwidth in 0.1 degrees	2U	1 to 300	-
Transmit power re maximum in dB	1S	0 to -50	-
Receive beamwidth in 0.1 degrees	1U	5 to 80	-

Data Description	Format	Valid range	Note
Receive bandwidth in 50 Hz resolution	1U	1 to 254	-
Receiver fixed gain setting in dB	1U	0 to 50	-
TVG law crossover angle in degrees	1U	2 to 30	-
Source of sound speed at transducer	1U	0 to 3	5
Maximum port swath width in m	2U	10 to 20000	8
Beam spacing	1U	0 to 3	6
Maximum port coverage in degrees	1U	10 to 110	8
Yaw and pitch stabilization mode	1U	-	7
Maximum starboard coverage in degrees	1U	10 to 110	-
Maximum starboard swath width in m	2U	10 to 20000	-
Spare (Always 0)	2U	-	-
HiLo frequency absorption coefficient ratio	1U	00 to 120	-
End identifier = ETX (Always 03h)	1U	-	-
Check sum of data between STX and ETX	2U	-	—

The system status will by set bits indicate system faults by bit coding (a fault may not necessarily be detrimental to system performance).

The Operator Station status byte is used as follows:

• 1xxx xxxx - No reply from the Processing Unit.

The Processing Unit status byte is used as follows:

- xxxx xxx1 Communication error with BSP
- xxxx xx1x Communication error with Transceiver or Sonar Head
- xxxx x1xx Attitude not valid for this ping
- xxxx 1xxx Heading not valid for this ping
- xxx1 xxxx System clock has not been set since power on
- xx1x xxxx External trigger signal not detected
- x1xx xxxx Hull unit not responding

A set bit in the BSP status byte indicates an internal communication problem. On the EM 2000 and EM 3000 problems with the high speed data uplink are specifically indicated as follows:

- xxxx xxx1 EM 2000, EM 3000 and Sonar Head no 1 on the EM 3000D
- xxx1 xxxx Sonar Head no 2 on the EM 3000D

The BSP status byte is used as follows by the EM 3000:

- xxxx xxx1 Ping rejected due to errors in received data on BSP1
- xxxx xx1x Too much seabed image data on BSP1
- xxxx x1xx Invalid command received by BSP1
- xxx1 xxxx Ping rejected due to errors in received data on BSP2
- xx1x xxxx Too much seabed image data on BSP2
- x1xx xxxx Invalid command received by BSP2

The Sonar Head status byte is used as follows by the EM 2000 and EM 3000:

- xxxx xxx1 Temperature too high on Sonar Head 1
- xxxx xx1x Data link failure on Sonar Head 1
- xxxx x1xx Voltages out of range on Sonar Head 1
- xxx1 xxxx Temperature too high on Sonar Head 2 of EM 3000D
- xx1x xxxx Data link failure on Sonar Head 2 of EM 3000D
- x1xx xxxx Voltages out of range on Sonar Head 2 of EM 3000D

The Transceiver status byte is used as follows by the EM 120, EM 300 and EM 1002:

- xxxx xxx1 Transmit (HV) voltage out of range
- xxxx xx1x PSU voltage out of range
- xxxx x1xx Internal communication error
- xxxx 1xxx Receive channel DC offset(s) out of range
- xxx1 xxxx Internal communication error
- x1xx xxxx Internal communication error
- 1xxx xxxx Defective fuse(s) in transmitter

Note 2

The mode identifier byte is used as follows:

- 0000 0000 Nearfield (EM 3000) or Very Shallow
- 0000 0001 Normal (EM 3000) or Shallow (default for EM 2000)
- 0000 0010 Target detect (EM 3000) or Medium
- 0000 0011 Deep
- 0000 0100 Very deep

• 0000 0101 - Extra deep (EM 300)

Note 3

The filter identifier byte is used as follows:

- xxxx xx00 Spike filter set to Off
- xxxx xx01 Spike filter is set to Weak
- xxxx xx10 Spike filter is set to Medium
- xxxx xx11 Spike filter is set to Strong
- xxxx x1xx Slope filter is on
- xxxx 1xxx Sector tracking or Robust Bottom Detection (EM 3000) is on
- 0xx0 xxxx Range gates have Normal size
- 0xx1 xxxx Range gates are Large
- 1xx0 xxxx Range gates are Small
- xx1x xxxx Aeration filter is on
- x1xx xxxx Interference filter is on

Note 4

The used absorption coefficient should be derived from the seabed image or central beams echogram datagram if it is automatically updated with changing depth.

Note 5

The sound speed (at the transducer depth) source identifier is used as follows :

- 0000 0000 From real time sensor
- 0000 0001 Manually entered by operator
- 0000 0010 Interpolated from currently used sound speed profile

Note 6

The beamspacing identifier is used as follows:

- 0000 0000 Determined by beamwidth (FFT beamformer of EM 3000)
- 0000 0001 Equidistant
- 0000 0010 Equiangle
- 0000 0011 Equiangle around nadir, equidistant in between

Note 7

The yaw and pitch stabilization identifier is set as follows:

- xxxx xx00 No yaw stabilization
- xxxx xx01 Yaw stabilization to survey line heading (Not used)
- xxxx xx10 Yaw stabilization to mean vessel heading
- xxxx xx11 Yaw stabilization to manually entered heading
- 1xxx xxxx Pitch stabilization is on.

Port swath width and coverage was in earlier versions the sum of port and starboard

Installation parameters

This datagram is an ASCII datagram except for the header which is formed as in all other output datagrams. The datagram is issued as a start datagram when logging is switched on and as a stop datagram when logging is turned off, i.e. at the start and end of a survey line. It may also be sent to a remote port as an information datagram. It is usually followed by a sound speed profile datagram.

In the datagram all ASCII fields start with a unique three character identifier followed by "=". This should be used when searching for a specific field as the position of a field within the datagram is not guaranteed. The number or character part following is in a variable format with a minus sign and decimal point if needed, and with "," as the field delimiter. The format may at any time later be expanded with the addition of new fields at any place in the datagram.

For the EM 3000 the transducer 1 data are for the Sonar Head and the transducer 2 data are for the second Sonar Head of an EM 3000D. For other new EM systems with separate transmit and receive transducers, transducer 1 refers to the transmit transducer, and transducer 2 refers to the receive transducer.

Data Description	Example	Format	Valid range	Note
Number of bytes in datagram	-	4U	-	1
Start identifier = STX	Always 02h	1U	-	-
Type of datagram = I or i(nstallation parameters) or r(emote information)	Start = 049h Stop = 069h Remote info = 70h	1U	-	_
EM model number	EM 3000 = 3000	2U	-	-
Date = year*10000 + month*100 + day	Feb 26, 1995 = 19950226	4U	-	-

Data Description	Example	Format	Valid range	Note
Time since midnight in milliseconds	08:12:51.234 = 29570234	4U	0 to 86399999	-
Survey line number	_	2U	0 to 65534	-
System serial number	_	2U	100 —	-
Serial number of second sonar head	-	2U	100 —	-
Water line vertical location in m	WLZ=x.x,	ASCII	-	-
System main head serial number	SMH=x.x,	ASCII	100 —	1
Hull Unit	HUN=x	ASCII	0 or 1	-
Hull Unit tilt offset	HUT=x.x	ASCII	-	-
Transducer 1 vertical location in m	S1Z=x.x,	ASCII	-	-
Transducer 1 along location in m	S1X=x.x,	ASCII	-	-
Transducer 1 athwart location in m	S1Y=x.x,	ASCII	-	-
Transducer 1 heading in degrees	S1H=x.x,	ASCII	-	-
Transducer 1 roll in degrees re horizontal	S1R=x.x,	ASCII	-	-
Transducer 1 pitch in degrees	S1P=x.x,	ASCII	-	-
Transducer 1 no of modules	S1N=xx,	ASCII	-	-
Transducer 2 vertical location in m	S2Z=x.x,	ASCII	-	-
Transducer 2 along location in m	S2X=x.x,	ASCII	-	-
Transducer 2 athwart location in m	S2Y=x.x,	ASCII	-	-
Transducer 2 heading in degrees	S2H=x.x,	ASCII	-	-
Transducer 2 roll in degrees re horizontal	S2R=x.x,	ASCII	-	-
Transducer 2 pitch in degrees	S2P=x.x,	ASCII	-	-
Transducer 2 no of modules	S2N=xx,	ASCII	-	-
System (sonar head 1) gain offset	GO1=x.x,	ASCII	-	-
Sonar head 2 gain offset	GO2=x.x,	ASCII	-	-
Outer beam offset	OBO=x.x	ASCII	-	-
High/Low Frequency Gain Difference	FGD=x.x	ASCII	-	-
Transmitter (sonar head no1) software version	TSV=cc,	ASCII	-	2
Receiver (sonar head 2) software version	RSV=cc,	ASCII	-	2
BSP software version	BSV=cc,	ASCII	_	2
Processing unit software version	PSV=cc,	ASCII	_	2
Operator station software version	OSV=cc,	ASCII	-	2
Datagram format version	DSV=cc,	ASCII	-	2
Depth sensor time delay in millisec	DSD=xx,	ASCII	-	-
Depth sensor offset	DSO=x.x,	ASCII	-	-
Depth sensor scale factor	DSF=x.x,	ASCII	-	-
Depth sensor heave	DSH=aa,	ASCII	IN or NI	3
Active position system number	APS=x,	ASCII	0 to 2	7
Position system 1 motion compensation	P1M=x,	ASCII	0 or 1	4
Position system 1 time stamp used	P1T=x,	ASCII	0 or 1	5

Data Description	Example	Format	Valid range	Note
Position system 1 vertical location in m	P1Z=x.x,	ASCII	-	-
Position system 1 along location in m	P1X=x.x,	ASCII	-	-
Position system 1 athwart location in m	P1Y=x.x,	ASCII	-	-
Position system 1 time delay in seconds	P1D=x.x,	ASCII	-	-
Position system 1 geodetic datum	P1G=cc,	ASCII	-	-
Position system 2 motion compensation	P2M=x,	ASCII	0 or 1	4
Position system 2 time stamp use	P2T=x,	ASCII	0 or 1	5
Position system 2 vertical location in m	P2Z=x.x,	ASCII	-	-
Position system 2 along location in m	P2X=x.x,	ASCII	-	-
Position system 2 athwart location in m	P2Y=x.x,	ASCII	-	-
Position system 2 time delay in seconds	P2D=x.x,	ASCII	-	-
Position system 2 geodetic datum	P2G=cc,	ASCII	-	-
Position system 3 motion compensation	P3M=x,	ASCII	0 or 1	4
Position system 3 time stamp use	P3T=x,	ASCII	0 or 1	5
Position system 3 vertical location in m	P3Z=x.x,	ASCII	-	-
Position system 3 along location in m	P3X=x.x,	ASCII	-	-
Position system 3 athwart location in m	P3Y=x.x,	ASCII	-	-
Position system 3 time delay in seconds	P3D=x.x,	ASCII	-	-
Position system 3 geodetic datum	P3G=cc,	ASCII	-	-
Position system 3 on serial line or Ethernet	P3S= x,	ASCII	0 for Ethernet	-
Motion sensor 1 vertical location in m	MSZ=x.x,	ASCII	-	-
Motion sensor 1 along location in m	MSX=x.x,	ASCII	-	-
Motion sensor 1 athwart location in m	MSY=x.x,	ASCII	-	-
Motion sensor 1 roll reference plane	MRP=aa,	ASCII	HO or RP	-
Motion sensor 1 time delay in milliseconds	MSD = x - x,	ASCII	-	-
Motion sensor 1 roll offset in degrees	MSR=x.x,	ASCII	-	-
Motion sensor 1 pitch offset in degrees	MSP=x.x,	ASCII	-	-
Motion sensor 1 heading offset in degrees	MSG=x.x,	ASCII	-	-
Motion sensor 2 vertical location in m	NSZ=x.x,	ASCII	-	6
Motion sensor 2 along location in m	NSX=x.x,	ASCII	-	6
Motion sensor 2 athwart location in m	NSY=x.x,	ASCII	-	6
Motion sensor 2 roll reference plane	NRP=aa,	ASCII	HO or RP	6
Motion sensor 2 time delay in milliseconds	NSD = xx,	ASCII	-	6
Motion sensor 2 roll offset in degrees	NSR=x.x,	ASCII	-	6
Motion sensor 2 pitch offset in degrees	NSP=x.x,	ASCII	-	6
Motion sensor 2 heading offset in degrees	NSG=x.x,	ASCII	-	6
Gyrocompass heading offset in degrees	GCG=x.x,	ASCII	-	-
Roll scaling factor	MAS=x.x,	ASCII	-	-
Transducer depth sound speed source	SHC=x	ASCII	0 or 1	8
Active heading sensor	AHS=x,	ASCII	1 to 4	-

Data Description	Example	Format	Valid range	Note
Active roll sensor	ARO=x,	ASCII	1 to 4	-
Active pitch sensor port no	API=x,	ASCII	1 to 4	-
Active heave sensor port no	AHE=x,	ASCII	1 to 4	-
Cartographic projection	CPR=aaa,	ASCII	-	-
Responsible operator	ROP=cc,	ASCII	-	-
Survey identifier	SID=cc,	ASCII	-	-
Survey line identifier (planned line no)	PLL=xx,	ASCII	-	-
Comment	COM=cc,	ASCII	-	-
Spare byte if required to get even length	Always 0 if used	0–1U	-	-
End identifier = ETX	Always 03h	1U	-	-
Check sum of data between STX and ETX		2U	-	-

Serial number of head no 2 if that head is the only one in use with the EM 3000D, otherwise the serial number of head no 1 in the EM 3000D or the only head in the EM 3000.

Note 2

A version number is given as 3 alphanumerical fields separated by decimal points, plus date as yymmdd (for example 3.02.11 991124).

Note 3

IN = the heave of an underwater vehicle is presumed to be measured by the vehicle's depth sensor and the heave sensor input is not used by system.

Note 4

1 = the positions are motion compensated

0 = the positions are not motion compensated

Note 5

0 = the system has used its own time stamp for the valid time of the positions

1 = the system has used the time stamp of the position input datagram (external time).

Note 6

If entries for a second motion sensor are not included although two sensors are being used, they are presumed to have the same parameters.

Note 7

Position system number -1.

0 = Transducer depth sound speed is used as the initial entry the sound speed profile used in the raytracing calculations.

1 = Transducer depth sound speed is NOT used for raytracing calculations.

Note that the source of the sound speed at the transducer depth (and this sound speed is always used to calculate beam pointing angles if required) is logged in the runtime datagram.

11 SYSTEM ADMINISTRATION

11.1 Introduction

This chapter provides basic reference information useful for the EM 300 system supervisor. In order to make the most of the information provided, you may need some basic knowledge of the Unix operating system.

11.2 Passwords

EM 300 Installation setup

In order to change the installation parameters on the EM 300 system, you need to enter a password. This password is common for all the operators of the EM 300 system. You will automatically be prompted to enter the password once you select **Edit enable** in the **Edit** menu.

If a password has not been identified, the first attempt to modify the installation parameters will prompt you to enter a new password.

If the password is lost, the current password can be deleted by deleting the following file:

\$HOME/.eso_system/.esoEM 300_protection

No special privileges are required to delete this file. Once it is gone, the system will prompt you for a new password next time you choose **Edit enable**.

11.3 EM 300 File system

Introduction

The EM 300 requires a large number of individual files. Some are used for data storage, others for system setup, while some are used to store operator and system configurations. This chapter lists the various file types and provides brief explanations.

The notation \$<name> is an "environment variable", usually specifying a filsystem directory.

Survey files

During a survey, the EM 300 system will record and store the following file types:

- Raw data
- Survey data

The information is stored on the Operator Station harddisk on dedicated data formats defined by Kongsberg Maritime..

Survey data

These are the data files generated by the system. Note that files will only be stored if the **Survey Format To Disk** option is checked in the window opened by **Options** -> **Logging**.

These files are used by the post-processing software, and by the Survey Display program.

Unless this data is stored, the Survey Display application will not work.

Raw data

These are the files containing the raw data retrieved during the survey. These files are the most important files collected during a survey. If you accidentally loose your survey data format files (required by the post-processing software), you can recreate these files based on the raw data files. Care should be taken to backup raw data files on a regular basis, using the backup facilities supplied as an integral part of the system.

Sound speed profiles

All the sound speed profiles are stored as separate files in directory specified by the environment variable.

Note

\$SHAREDHOME

The files have extension *.asvp

Absorption coefficient file

The absorption coefficient file contains number pairs of absorption coefficients and corresponding depths. The coefficients are integrated during loading to the echo sounder and the integrated value is used. The file is named **absorption.coef** and is stored in directory:

\$SHAREDHOME

Workstation I/O

When you define the use of the Operator Station's serial lines, the setup information is stored in the following file:

\$HOME/.eso_system/esoSetup.serial

Echo sounder parameters

These are the files determining how the current echo sounder system is set up. The system uses separate files for runtime and installation parameters.

Installation setup

The installation setup information is saved in the following file:

\$HOME/.eso_system/esoEM300Setup.installation

Every time you save this file, a backup file is generated automatically. This file is named:

 $eso EM300 Setup.installation.yyyy_mmdd_hhmm$

where:

yyyy=year mm=month dd=day hh=hour mm=minute.

You can also save the setup files with other names you choose yourself. You can then pick any name, but you must keep the extension as ".installation". The extension is added automatically if you only specify the file name.

Runtime setup

The runtime setup information is saved in the following file: esoEM300Setup.runtime

Every time you save this file, a backup file is generated automatically. This file is named:

\$HOME/.eso_system/esoEM300Setup.runtime.yyyy_mmdd_ hhmm

where:

yyyy=year mm=month dd=day hh=hour mm=minute.

You can also save the runtime files with other names you choose yourself. You can then pick any name, but you must keep the extension as ".runtime". The extension is added automatically if you only specify the file name.

Echo sounder status

The information in the Status Field in the Launchpad is stored in the following file:

\$HOME/.eso_system/esoSetup.status

IP addresses, ports and datagrams

The IP addresses for the various items in the system, the ports used for the various applications, and the datagram distribution are collected in the following file:

\$HOME/DPC.addresses.<host>

where <host> is the name of the Operator Station.

You may modify the contents of this file by using the **Options** -> **Datagram subscriptions** choices on the Launchpad.

The datagrams available are listed in the following file:

\$HOME/.eso_system/esoSetup.datagrams

This is a static file, and will only be used by the system.

NMEA 0183

The information for the NMEA 0183 depth serial line is stored in the following file:

\$HOME/.eso_system/esoSetup.serial

BIST files

When you run the built-in test applications, the results displayed in the output area in the BIST window may be saved to disk. The file is created with the following location and file name: \$HOME/.eso_system/BISToutput

Every time you save the information, the old file will be replaced. The information is stored in ASCII format.

Logfiles

Each application in the EM 300 system issues report and error messages when required. These messages are collected in logfiles.

The size of the current logfile is monitored by the system. If it exceeds 8Mb, a warning dialogue pops up recommending a reset of the file. The actual reset is done using the **File**->**Reset Logfile** option, as instructed in the popup dialogue.

When you reset the logfile using the **File** -> **Reset logfile** command on the Launchpad, you may create a backup copy of the logfile. The backup is named:

\$HOME/.eso_system/esoLogfile.yyyy_mmdd_hhmm

where:

yyyy=year mm=month dd=day hh=hour mm=minute.

In most cases you do not need to create backup copies of the logfile, since errors and warnings are logged to the survey logfiles during active surveying.

In addition to this logfile, the errors and warnings issued during a survey are saved on a separate file for the active survey. This file is only created while logging takes place. The file is:

\$PROCHOM/<survey>/esoLogfile

where <survey> is the chosen name for the active survey.

Operator configuration files

These are the individual files containing the operator specified window layouts and desktop workspaces for the programs supervised by the EM 300 Launchpad.

Default window layout

Each operator can define a preferred window and workspace layout, and then use the **Window Layout** -> **Save Operator's Layout** command on the launchpad's main menu to save this information. The name of the file will be: \$HOME/.eso_system/esoEmX_config.<operator>

where <operator> is the current operator of the system, as defined in the Launchpad's Survey field (below the program icons).

The default window layout is:

\$HOME/.eso_system/esoEmX_config

List of known operators

The list of the operators known to the system is stored in the following file:

\$HOME/.eso_system/esoSetup.operators

User preferences

All the preferences you define during the survey are stored in a separate file.

\$HOME/.eso_system/esoSetup.launchpad

This file is created using the **Options -> User preferences** command on the Launchpad's main menu.

Survey jobs

These are the files generated by the Survey Display's Planning module. All these plans are located in the following directory:

\$SHAREDHOME/<job name>.asciiplan

TOC files

The TOC (Table of Contents) files are created automatically when you select the Generate Tape TOC operation in the File Admin window.

Each TOC file contains a list of oll the files on the tape. This is normally all the files used for a specific survey, but in general it can be any file types recognized by the File Admin utility.

The TOC files can be named manually, or they can be assigned a name automatically. This name is then defined based on the curernt date and time with extension *.TOC.

The files are stored in the following directory:

\$HOME/.eso_system/

11.4 File formats

Introduction

The main files are described in this chapter, but the header files that follow the system are only referred to and must be inspected by listing the header file of current interest or by checking the computer display.

Survey format and I/O library

The **Survey Format** (**SF**) files are the key files of the Kongsberg Maritime workstation systems. The files are located in the **\$PROCHOME** directory. An I/O library from Kongsberg Maritime is supplied to the users who wish to access the data themselves. You can then install the I/O library whereever it fits for your development. Header files and libraries are available.

The **SF** is a Kongsberg Maritime defined format that fits for all Kongsberg multibeam echo sounder data, and for the EA 500 and EK 500 single beam echo sounders. The data is converted directly to this format if a Kongsberg Maritime logging system is used. As the lines are run, the raw data is fed into the **handleMessage** or **handleEmX** filter and stored correctly on the **\$PROCHOME**/**<SurveyName>** directory, while the **survey.lines** file on the same directory is updated with information about the same line.

The survey format

Introduction

This is the Kongsberg Maritime workstation processing format that applies to all multibeam echo sounders and also to some single beam echo sounders. The format is used in other workstation products in addition to *Neptune*, such as *Merlin*, *Poseidon* and *Triton*.

The format is based on indexed files. For each line there is an index file which holds some common index data for each ping. The files handled by the index file are:

- 1 Depth file
- 2 Sonar Image file
- 3 Classification file

The following files have been defined as system administration files:

- 4 Parameter file
- 5 sound speed file

These files contain parameter settings and information about the sound speed that has been used during the data collection. The information about the used sound speed is vital for reprocessing old data with new sound speed profiles.

The position files (there might be several due to more than one positioning system) are treated separately. After position processing, a new valid position file is generated and will be used for further processing (Sensor 00), version 02.

A representation of the file structure is described by the following:

U		
Index file	Depth file	Position file
FileHeadrec	FileHeadRec	FileHeadrec
PingHeadRed	DepthFileRec 1	PosHeadRec
IndexFileRec 1 1	DepthFileRec 2	PositionFileRec
IndexFileRec 2 2		PositionFileRec
•••••	DepthFileRec i	
IndexFileRec i ec i		PositionFileR
	DepthFileRec n	
IndexFileRec n n		PositionFileRec
Raw sidescan file	Parameter file	sound speed file
FileHeadRec	FileHeadRec	FileheadRec
SideHeadRec	ParameterRec 1	SndVelFileRec 1
SideRawFileRec 1	ParameterRec 2	SndVelFileRec 2
SideRawFileRec 2		
		•••••
	ParameterRec i	SndVelFileRec i
SideRawFileRec i		
	ParameterRec n	SndVelFileRec n
SideRawFileRec n		

Survey format I/O library

The I/O sub-routine library can be used by a company or institution who have bought a license for a Kongsberg Maritime workstation product. It can also be distributed by the Kongsberg Maritime customer to others after agreement between Kongsberg Maritime and the institution or company. Maintenance and help with the library and files are given to those who have maintenance contract with Kongsberg Maritime.

The Survey format coordinate system

The coordinate system of the vessel has an x-axis along the ships keel pointing forwards from the origin of the ship. The y-axis points to starboard, and the z-axis points straight down giving the depths as positive values increasing with depth.

This generates the *right-hand coordinate system* on board the ship. Positive rotation around the axis is defined by the right-hand rule, giving a positive rotation of angles in the horizontal plane in the same way as the gyro rotates positively (Clockwise as seen from above the ship).

The data that is logged on files is in latitude/longitude coordinates. The data is represented by a 4-byte integer that has the following resolutions:

Latitude

2*10E7 decimal degrees per number unit (+90 to -90 degrees).

Longitude:

1*10E7 decimal degrees per number unit (+180 to -180 degrees).

Depths are treated with centimetre resolution in the EM 300 system, and represented in this resolution on the XYZ files.

Use of the Kongsberg Maritime I/O library

Introduction

The Kongsberg Maritime I/O library consists of two different parts. One part is intended to be used by those who want to fit their own data into Kongsberg Maritime's *Survey Format* (SF) file format. The modules supported for this use are *msgSim* and *handleMessage*. The handleMessage takes its input data from the logging program (Mermaid/Merlin) or from msgSim. The other part is intended to be used by those who want to use Survey Format data. This part of the library is called RWlib (Read and Write library). All routines in the library return an integer as return parameter. This parameter is negative if something went wrong or the data returned are not valid.

Message simulator

The message simulator (**msgSim**) simulates messages from the logging system by reading one or more raw data files, putting the message length in front of each message and writing it to *stdout*. If the messages are separated on different data files, the files containing the depth data message must end with .dpt, position data with .pos, sidescan data with .rss and start/stop/parameter data with .inf. The module also handles the situation when all messages are collected in one file. All of these data files must only contain valid, complete messages and nothing else.

Message handling

Messages from Mermaid/Merlin or msgSim may be 'piped' into **handleMessage**. This module reads the messages from **stdin**, decodes them into survey format and writes them to file. The files written are:

- position files (.pos)
- depth files (.depth)
- sidescan files (.sidescan)
- parameter files (.para)
- sound speed files (.svel)
- index files (.ind).

The name of the new file starts with the line number, an underscore, the date of the start telegram, an underscore, the time, an underscore, sensor number, an underscore, version number and the extension.

Example:

0183_19921031_155630_00_01.depth

The module starts decoding and writing when a start telegram arrives and stops when a stop telegram arrives. If sidescan data is to be handled, depth data must be present, and if the data is to be used with "near real time" visualization (i.e. Merlin), position data must also be present. For information on how to run handleMessage, see the section "Command references".

Library calls

Introduction

The library is written in the ANSI "C" programming language. The definition and prototyping is done in the ***.h** files:

• readWriteFile.h

- SurveyLines.h
- newFormat.h

The return structures that you need to know about are found in the **newFormat.h** file. This file is documented internally in the file, while the other ***.h** files not are intended to be read, just included to supply you with the structures required for some of the calls. These calls are described here, and the prototyping is found in the above listed header files.

Writing new files

For writing new files in SF the library **libRW** is supported. With this library you can open, write and close new files in SF. Before a file (of any type) can be written, it must be opened by the appropriate open routine for this file type. The input parameters for these routines are:

- file directory,
- generic file name,
- sensor number (set to 0->zero)
- type specific header,
- a comment and a description of the process which created the file.

In addition file handler **newFilePnt** must be supported for each file (except for opening the index file) and one common write handler. E.g. this write handler is used for writing indices to files. To write new records to file, a set of writing routines are supported. All those writing routines have their specific record format, their file handler (except for writing pings) and the common write handler as parameters. When depth data or sidescan data is written, it must be specified which sounder (port or starboard for dual system or single for single system) the data comes from. To close the file (except the index file which is closed with a specific routine) the routine *closeNewFile* is called with the file handler as input.

All data are written to file in the native format (little or big Endian) in which the program is running. The index file (with ping data) is written every time the ping number changes. This is done automatically in **writeDepth** or **writePing**, which means that these routines must be called in order to let the index and ping records be written (ping number must be supplied and properly changed if not present in the raw datagram). Date and time must also be supplied for each record (ping and position) so that it will be possible to index a ping from position through data and time. When the index file is written, all indices are written including those for sidescan and position. As sidescan data only are accessible through the index file, all calls to either writeDepth or writePing must be made. Position data, on the other hand, may either be accessed via index (for "near real time") or via time. But in order to make indices for the position data correct, all data must be written in time sequence. The positions are also filtered for coarse jumps (i.e. more than one degree) and flagged accordingly before they are written. Available routines are described in the following paragraphs.

Open files

newIndexFile: Open and init index file

(IN: writeHandler, directory, fileName, sensor, pingHeader, comment, process)

newPosFile: Open and init position file

(IN: fileHandler, writeHandler, directory, fileName, sensor, posHeader, comment, process)

newDepthFile: Open and init depth file

(IN: fileHandler, writeHandler, directory, fileName, sensor, comment, process)

newSideFile: Open and init sidescan file

(IN: fileHandler, writeHandler, directory, fileName, sensor, sideHeader, comment, process)

newSvelFile: Open sound speed file

(IN: fileHandler, writeHandler, directory, fileName, sensor, comment, process)

newParaFile: Open parameter (start/stop/parameter) file

(IN: fileHandler, writeHandler, directory, fileName, sensor, comment, process)

Write files

writePos: - Write position data to file

(IN: fileHandler, writeHandler, positionRecord)

writeDepth: Write depth data to file (and possible also index and ping)

(IN: fileHandler, writeHandler, sounder, depthRecord) writeSidescan: Write sidescan data to file

(IN: fileHandler, writeHandler, sounder, sidescanRecord) **writePing:** Set current ping data, write ping and index data to file

(IN: writeHandler, sounder, pingRecord)

writeSvel: Write sound speed data to file

(IN: fileHandler, writeHandler, soundVelRecord) writePara: Write parameter data to file

ner ala. White parameter data to me

(IN: fileHandler, writeHandler, parameterRecord)

Close files

closeNewFile: Close a file

(IN: fileHandler)

closeIndexFile: Write last index/ping to file (if necessary), close index file

(IN: writeHandler)

Reading and updating survey data

For those who only want to read or update data on SF, the library *libRW* is supplied. With this library you can open, read, copy, update and close the files containing SF data.

Before anything can be done with a file, it must be opened by the appropriate opening routine. These routines have the parameters:

- 1 file mode (r or r+)
- 2 directory
- 3 file name
- 4 sensor number (set to 0)
- 5 file version number as input

In addition a file handler must be supported for each file. For the index file an index handler must also be supported. It is through this index handler that depth, sidescan and (for "near real time") position data are accessible. The different opening routines then return some type specific data (e.g. a file header and number of record). To open a file for reading, set file mode to **r** and for updating set file mode to \mathbf{r} +.

If the data is written on a machine with little Endian and read on a machine with big Endian format (or vice versa), it is automatically swapped when read, or updated. If the file is copied, then it is always copied to the native format of the machine the program is running on. Compressed data can not be transferred between little Endian and big Endian machines.

Compressed data can not be transferred between little Endian and big Endian machines.

The data can be accessed in several different ways. Ping data, position data, sound speed data and parameter data are accessed via an index number which starts at 0 (zero) and goes up to the number of records (minus one) for each file. Depth data and sidescan data are accessed via the file index. This index is set with the **setFileIndexno** routine. If the depth and sidescan data were produced by a dual echo sounder system, the port and starboard can be accessed via the *port* and *stb* parameters; for single echo sounder system, the *sing* parameter is used.

To get an interpolated position for a ping, one must first call the routine **initPosInter**. This routine incudes an index to the first position and number of positions as input parameters. This is because all indexing on a file within a region is based on the indices from the position file. The routine uses a handler **posSearchPnt** and returns the first valid ping index and number of indices within the positions. These parameters should then be used in the loop to access the ping, depth and sidescan data.

To get a ping with its position the routine **getPingPos** is used. This uses the parameter **indexHandler** set by **setFileIndexno**. You may also specify the maximum legal difference in time and in distance from the ping to the two nearest positions. If you only want ping data at a specific delta distance, this may also be set. If the routine returns with a negative number, no valid position exists for this ping. When finished, **freePosInter** is called.

To update a file, the file must be opened with file mode = r+. Then all the update routines can be used. Access through the index handler to depth and sidescan files must still be used. When the updating is finished, **updateHeader** must be called to set the right time and process for file updated. If you want to change other data in the files than flags, the file should be copied (with copyFile) before it is updated. The routine **copyFile** has as input parameter the file handler and the new directory, and it returns the new file version number.

To make a new position file from several position files (combine), the general file header must be copied with **copyHeader**. Then the copied file (header) must be opened with **openPosFileAppend** and position can be written (in sequence) with **updatePostion**.

Note

There are also some convenience routines to update flags for position, ping and depth data. These routines read the data, check if some flags are changed and if so, write the changed data back. Modules that keep original survey data structures in memory, should use the ordinary update routines instead. It is however strongly recommended that you keep track of what flags (e.g. one variable that tells whether some of the depth flags for a ping are changed) that are changed, in order to minimize input/output. When depth flags are updated only those flags which are not equal NaN (Not a Number) are updated.

The module does also (for the time being) contain some routines to transform across- and along-data for each beam to either latitude and longitude or to UTM and to calculate the distance between two positions. Supplied routines are described in the following paragraphs.

Open files

openIndexFile Open index file

IN: fileHandler, indexHandler, fileMode, directory, fileName, sensor, versionNumber,

OUT: pingHeader, sounderSystem, numbOfPing

openPosFile Open position file

IN: fileHandler, fileMode, directory, fileName, sensor, versionNumber,

OUT: posHeader, numbOfPos

openDepthFile Open depth file

IN: fileHandler, fileMode, directory, fileName, sensor, versionNumber

openSideFile

eFile Open sidescan file

IN: fileHandler, fileMode, directory, fileName, sensor, versionNumber,

OUT: sideHeader

openSvelFile Open sound speed file

IN: fileHandler, fileMode, directory, fileName, sensor, versionNumber,

OUT: numbOfSvel

openParaFile Open parameter file

IN: fileHandler, fileMode, directory, fileName, sensor, versionNumber.

OUT: numbOfPara

openPosFileAppend Open position file for append			
IN: fileHandler, directory, fileName, sensor, versionNumber, posHeader)			
Reading data			
setFileIndexno Set index and get ping data			
IN: fileHandler, indexHandler, pingIndex,			
OUT: pingRecord			
getDepth Get depth data			
IN: fileHandler, indexHandler,			
OUT: singDepthRecord, stbDepthRecord, portDepthRecord			
getSidescan Get sidescan data			
IN: fileHandler, indexHandler,			
OUT: singSidescanRecord, stbSidescanRecord, portSide- scanRecord			
getPosition Get position data			
IN: fileHandler, posIndex,			
OUT: positionRecord			
getManyPos Convenience routine to get many positions			
IN: fileHandler, fromPosIndex, numbOfPos,			
OUT: positionRecords			
getSvel Get sound speed data			
IN: fileHandler, svelIndex,			
OUT: soundVelRecord			
getPara Get parameter data			
IN: fileHandler, paraIndex,			
OUT: parameterRecord			
getPosIndDateTime Get position indexes from date and time			
IN: fileHandler, totNumbOfPos, fromDate, fromTime, toDate, toTime			
OUT: fromPosIndex, numbOfPos			
initPosInter Initiate for accessing interpolated positions for ping			

IN: positionFileHandler, indexFileHandler, posSearchPnt, posHeader, fromPosIndex, numbOfPos, totalNumbofPing,

OUT: fromPingI	ndex, numbOfPing
getPingPos	Get ping with interpolated position
	ndler, indexHandler, posSearchPnt, Distance, maximumDistance, maximumT
OUT: pingRecor	d, positionRecord
freePosInter	Free data for position interpolation
IN: posSearchPn	t
getManyIndex-	Get noPing pings from fromPing
IN: indexFileHar	ndler, fromPing, noPing,
OUT: indexes	
getNoPing-	Get number of ping in file
IN: indexFileHar	ndler,
OUT: noPing	
getInterPos	Interpolate position from time and date
IN: positionFileF maxDist, maxTir	Iandler, indexFileHandler, posHead, neDiff,
OUT: newPos	
getPosList	Get position data into position list
IN: positionFileF deltaDist, maxDi	Handler, posHead, fromPos, noPos, st,
OUT: pingPosLi	st
getPingList	Get position data into ping list
IN: pingHead, po maxDist, maxTi	osSearch, fromPing, noPing, deltaDist, meDiff,
OUT: pingPosLi	st
getFromNoOfPing	Get fromping and no of pings for pings that are between two valid positions
IN: positionFileF noPos, totPing,	Handler, indexFileHandler, fromPos,
OUT: fromPing,	noPing
flagPosJump	Mark all position with pos_jump_flag which are outside a given range from the median of the surrounding positions
IN: posHead, nol	Pos, pos, medianFilterType, maxDist
<u>Copy file</u>	
copyFile	Copy file

IN: fileHandler, directory,

OUT: versionNumber					
copyHeader	Copy general file header				
IN: fileHandle	IN: fileHandler, directory,				
OUT: versionN	OUT: versionNumber				
Update file					
updatePing	Update ping data and set index				
IN: fileHandle	r, indexhandler, pingIndex, pingRecord				
updateDepth	Update depth data				
	r, indexHandler, singDepthRecord, rd, portDepthRecord				
updateSidescan	Update sidescan data				
IN: fileHandler, indexHandler, singSidescanRecord, stbSi descanRecord, portSidescanRecord					
updatePosition	Update position				
IN: fileHandler	r, posIndex, positionRecord				
updateHeader	Update file header after updating file				
IN: fileHandle	r, process, comment				
Update flags					
updatePosFlag	Update position flag				
IN: fileHandler	r, posIndex, positionFlag				
updatePingFlag	Update ping flag and set index				
IN: fileHandler	r, indexHandler, pingIndex, pingFlag				
updateDepthFlag	Update depth flag for current index				
IN: fileHandler, indexHandler, singDepthFlagList, stbDepthFlagList, portDepthFlagList					
<u>Close file</u>					
closeFile	Close a file				
IN: fileHandle	r				
Convenience rou	utines				
	een developed to make life easier for the functions are listed below.				
Transform					
toLL	Transform each beam to latitude and longitude				
IN: positionRe depthRecord,	cord, posHeader, gyroHeading,				

OUT: latLongPositions

toUTM	Transform each beam to UTM
IN: utmSone, po depthRecord,	ositionRecord, posHeader, gyroHeading,
OUT: utmPositi	lons
getDiffDist	Calculate distance between to positions (in centimetres)
IN: fromPositio	nRecord, toPositionRecord, posHeader
OUT: distance	
calcDirection	Calculate the direction from one position to another (in milli-degrees)
IN: fromPositio	nRecord, toPositionRecord, posHeader
OUT: direction	

Header files

For each file there is a description on what it contains. The documentation is on the header file itself, and the user should consult this file. It is found in the IO library distribution.

For each file there is a description on what it contains. The documentation is on the header file itself, and the user should consult this file. It is found in the IO library distribution.

readWriteFile.h	Handlers and prototypes for readWriteFile.c
newFormat.h	Definition of survey format.
process.h	Process id. description
datum.h	List of datums
cdefine.h	Definitions of some C programming definitions used in the programs.
general.h	Definition of some general structures that are used several places in the code.

SurveyLines library

This file is important for all the processing. It includes all the lines of the survey, and identifies which versions are the most recent. The file is binary and is located on the **\$PROCHOME/<SurveyName>** directory.

The file **survey.lines** is an index of all existing SF data files on current directory. The file **current.line** identifies the line currently being processed. These two files must be updated by the modules writing or updating SF files. All modules reading SF files get a list of existing survey format files by reading the **survey.lines** file. The sensors that exists for the different lines are also listed on a specific file. This is the **line.sensors** file. In addition a file called **adm.data** contains the sensors of the survey with their name and their id numbers.

<u>Writing and updating</u> The following routines are supplied:

int SlAdd (
s110FileType ioFileType	/* IN: SL_SURVEY_L or SL_CURRENT_L */
char *dir,	/* IN : Directory name */
char *prefix,	/* IN : File name prefix */
SlsurveyFileType survFileType	e /* IN: SL_POS, SL_INDEX, SL_DEPTH,or SL_SIDESCAN */
int version,	/* IN : File version */
ProDescType lastProc	/* IN : Process identification */
)	

This function adds a new record to the **survey.lines** file. If a record for the directory/file name prefix combination of current interest already exists, this record is updated and no new record is added. For **current.line** SlAdd has the same functionality as for **survey.lines**, except that when a new record is added, the previous record is deleted.

int SlUpdate (
SHAEilaTuna	:	

SlIoFileType ioFileType,	/* IN :	SL_SURVEY_L or SL_CURRENT_L */
char *dir,	/* IN	: Directory name */
char *prefix,	/* IN	: File name prefix */
SISurveyFileType survFileType	e /* IN:	SL_POS, SL_INDEX, SL_DEPTH,or SL_SIDESCAN */
int version,	/* IN :	File version */
ProDescType lastProc	/* IN	: Process identification */
)		

This function is equal to the SIAdd function, except that the current directory/file name prefix combination must exist. If the new version number is lower than the version number on the **survey.lines** file, then the datafiles (.pos, .ind, .depth, or .sidescan) with version number higher than the new version number will be deleted.

int SlDelete(

SlIoFileType ioFileType,	/* IN : S	L_SURVEY_L or SL_CURRENT_L */
char *dir,	/* IN :	Directory name */
char *prefix,	/* IN :	File name prefix */
SlSurveyFileType survFileType,	/* IN :	SL_POS,SL_INDEX,SL_DEPTH, or SL_SIDESCAN */
ProDescType lastPro	/* IN :	Process identification */
)		
Delete e cur	way forma	t file by setting the version equal to 0

Delete a survey format file by setting the version equal to 0. The record is deleted in the **survey.lines** file. The datafile (.pos, .ind, .depth, or .sidescan) will be deleted.

```
int SlDeleteLine(
```

× ×	
SlIoFileType ioFileType,	/* IN: SL_SURVEY_L or SL_CURRENT_L */
char *dir,	/* IN : Directory name */
char *prefix,	/* IN : File name prefix */
ProDescType lastPro	/* IN : Process identification */
)	

Deletes all survey format files for a line by setting the versions equal to 0. The datafiles (.pos, .ind, .depth, and .sidescan) will be deleted and the file [<dir>/]<prefix>_00_01.para will be deleted

Reading

The following functions return information in a SlList structure (See the SurveyLines.h file for information about the structure). The following routines are supplied:

```
SlList *SlCreateList (
```

SlIoFileType ioFileType,

/* IN: SL_SURVEY_L or SL_CURRENT_L */

)

Function for reading **survey.lines** and **current.line**. SlCreateList returns a SlList structure.

int SlUpdateList (

SlloFileType ioFileType, SlList *ioList /* IN: SL_SURVEY_L or SL_CURRENT_L */

/* IN: Pointer to structure from the SlCreateList function */

)

SIUpdateList updates an existing SIList structure. Use SICreateList once to create the list. Then call SIUpdateList repeatedly to get information on changes made to the survey.lines or current.line.

Header files

This is where the programmers can find the definitions of the structures of this library. The actual header files are:

SurveyLines.h Survey line and current line structures.

lineSensors.h Structures and routines for the line.sensors file.

Administration file I/O

File format

The **adm.data** file contains the names of the different sensors. The file is an ASCII file named where for each sensor the following data are written:

sensor <sensorType1> <N1> <name1>

sensor <sensorType2> <N2> <name2>

sensor <sensorType1> <N3> <name3>

where **Nx** is the sensor number on the Survey Format files, and **namex** is the name of the sensor. The **sensorTypex** is position or depth. This is when more than the usual EM sensor exists. The Merlin logging system will build this file and the **survey.lines** file automatically, and the default EM sensor is given by:

sensor position 0 undefined

Reading

To read the file, the following routine is called:

AdReadAdm (EvHandler *evHand)

And to fetch the sensors read:

AdGetSensors (int *noSensors, SensorPnt *snrPnt)

Structures and files

The structures are defined in the **adm.h** file.

11.5 Survey Predefined Files

Introduction

When you define and run a survey, you will always need information describing basic data or set-up, such as:

- projection data
- user defined colours
- user defined show/hide settings
- coastline contours
- course deviation

The **Survey Predefined Files** function allows you to build a set of templates to hold this kind of information.

File locations

The Survey Predefined Files are located in the \$SHAREDHOME directory. In this directory, you can create subdirectories defining specific survey types, where the type can be defined by your own choice. You can for example create sets of files to match specific bottom conditions or geographical locations.

The result may be (for example):

\$SHAREDHOME/Oslofjord/*.*

\$SHAREDHOME/Mercator_30_degrees/*.*

In order to create the file structure, and to copy in the files you wish to use, you need to open a terminal window on your Operator Station and use the standard Unix commands.

 \rightarrow Refer to the applicable instruction manual(s) for a description of the terminal window and the Unix commands.

Using the Survey Predefined Files

When you define a new survey using the options on the EM 300 launchpad, you are asked which of the Survey Predefined Files you will use. When you select any of the templates on the list, the files in that directory are copied over to the survey directory on \$PROCHOME.

11.6 Survey format conversion tools

Introduction

This information will be provided later.

11.7 Projection data

Scope and purpose

This document defines the interfaces and use of the component **Projection**. The purpose with the document is to describe how the component interfaces with other components, and how the component is to be used.

Projection overview

Each and every survey should have a well defined projection. The Kongsberg Maritime Software will use the defined projection in all geographic displays and in many other programs where a projection is needed.

There are three major different ways to define a projection in the Kongsberg Maritime Software:

- 1 You have full access to the library PROJ.4 from USGS.
- 2 You can give Kongsberg Maritime the source code (in "C") to his preferred projection, and make that projection a permanent part of all Kongsberg Maritime Software.
- 3 You can program your own projections into the shared library (libsharedProj.so) which is used in all Kongsberg Maritime Software. A template of the source code is supplied by Kongsberg Maritime.

It should be noted that Kongsberg Maritime knows nothing about what goes on inside your projection routines. Some of these routines may contain datum transformations which should be known to the system operator.

Projection protocol

You should for each and every survey define your preferred projection. The projection used in a survey is defined in the file

\$PROCHOME/<survey>/projection.data

The first word in the first line defines which projection to use. The file may look like this:

- **1** If the first word is "RijksDriehoksnet", the preferred projection for the Netherlands is used.
- 2 If the first word is "utm", a UTM-projection is used. Setting the UTM zone is however a little tricky:

utm 03 03

If the file looks like the above, UTM zone 31 is selected. The number 3 is the longitude.

- **3** If the first word is "sharedlib", the projection from the shared library libsharedProj.so is used
- 4 If the first word is "user_defined", a user defined projection from the USGS PROJ.4 library is used.

The file **\$PROCHOME**/<**survey**>/**projection.data** may then look like this:

user_defined defaultProjections:proj1

This means that the user defined projection using PROJ.4 is found in the file **\$PROJ_LIB/defaultsProjections** and that the setup for the projection is taken from **<proj1>**.

The file \$PROJ_LIB/defaultsProjections may look like this:

(which is standard PROJ.4, ref. [1], [2] and [3]):

- <proj1> proj=stere x_0=155000 y_0=463000 k=0.9996 lat_0=52.156160556 lon_o=5.387638889 <proj2> proj=utm zone=31
- 5 If the first word is "GK_AUSTRIA", the preferred projection for Austria is selected. There are 16 parameters which controls this projection and they are all kept in the same file. These 16 parameters must be in the specified order in the file, the rest of the file is comments. As we can see this projection performs a datum transformation from WGS 84 to Bessel (Europe) prior to the projection. The projection itself is a Gauss-Krüger.

\$PROCHOME/<survey>/projection.data may look like
this:

GK_AUSTRIA -563.9 -82.3 -463.4 4.47 4.85 1.88 4.46 6377397.155 299.15281285 16.3333333333333 6378137.0 298.257223563 0 -5000000 500 ! Line1: GK AUSTRIA tells Simrad Software ! to use Gauss-Kruger for Austria. Transformationsparameter ! ! für die Umwandlung von WGS84-Koordinaten ! nach Gauss-Krüger-Koordinaten bezogen ! auf das Datum MGI ! Zeile 1: Translation in x [m] ! Zeile 2: Translation in y [m] ! Zeile 3: Translation in z [m] ! Zeile 4: Maßstab ! Zeile 5: Rotation in x ["] ! Zeile 6: Rotation in y ["] ! Zeile 7: Rotation in z ["] ! Zeile 8: große Halbachse [m] ! Nutzersystem (z.B. Bessel) ! Zeile 9: Abplattung Nutzersystem ! (z.B. Bessel) ! Zeile 10: Zentralmeridian Nutzersystem ! (z.B. Bessel) ! Zeile 11: große Halbachse [m] WGS84 ! Zeile 12: Abplattung **WGS84** ! Zeile 13: Zuschlag Rechtswert ! Zeile 14: Zuschlag Hochwert ! Last line: Fixed height used in

! projections.

Notes

The setup of the projection is quite important to do right which means that this should be done by qualified persons only. In the Neptune/Survey Display system it is possible to set up default surveys that you can use as templates for new surveys. These default surveys can then be set up with the correct projections and given names which makes it easy for the operator to choose a default survey of the correct type. There is already a file \$PROJ_LIB/defaultsProjections which is in use if some of the standard default surveys are used.

11.8 Dynamic Projection Library

Introduction

This chapter defines the interfaces and use of the component Dynamic Projection Library.

The purpose is to describe how the component interfaces with other components and how the component is to be used.

Overview

There need to be defined a shared library where the customer can implement his own projection routines to use with Kongsberg Maritime's Graphic System. This shared library will then be a permanent part of all graphic windows.

Dynamic projection library definitions

In the graphic system today you can set projection and some projection parameters in the file

\$PROCHOME/<survey>/projection.data.

This file will also be used when you specify that projections shall be taken from the shared library **libsharedProj.so**. The shared library for customer defined projections,

libsharedProj.so, must be put somewhere where the loader will find it at startup, /usr/lib/libsharedProj.so.

Dynamic projection library protocol

When you wish to use a projection defined in the shared library, the first line in the file

\$PROCHOME/<survey>/projection.data must look like this:

sharedlib 5

The number (here: 5) is defined by you.

When the program (i.e. Survey, Merlin, GridDisplay) starts, it will look for the file

\$PROCHOME/<**survey**>/projection.data. When it finds the word **sharedlib** as the first word in the file, the next word is read as an integer which identifies which projection will be used.

The **initUserProjection** routine is then called with this number as a parameter. This enables you to do additional initialisation to the projection. Since only the first line in **\$PROCHOME**/ <**survey**>/**projection.data** is used by the system, you can freely use the rest of this file for additional parameters to be read at startup time. Each and every projection should be associated with a name. This name will appear when you wish to plot something on a plotter. For Kongsberg Maritime's Graphic System to get this name, you must supply a routine **getUserProjectionName** which also has the number as an input parameter and returns a string with the name to be used for the projection.

When Kongsberg Maritime's Graphic System is set up to use projection routines from the shared **library libsharedProj.so**, it will do so by calling two routines. The routine used for projection is **userProjectionLatLongToNorthEast**, and the routine used for the reverse projection is **userProjectionNorthEastToLatLong**.

Example

This is an example of how the codes for

- initUserProjection
- getUserProjectionName
- userProjectionLatLongToNorthEast
- userProjectionNorthEastToLatLong

should look like:

```
/* **FILEHEADER**
** $Id: dummyRoutines.c,v 1.1.1.1
** 1997/01/23 08:45:44 tp Exp $
**
** Filename: dummyRoutines.c
** Date of creation: 23 Jan 1997
** Creator: Terje Pedersen
** Purpose: Dummy-routines for the shared
**
    library libsharedProj.so
* *
    which can be changed by the customer.
** Copyright: Kongsberg Simrad AS
** ** FILEHEADER */
#include <stdlib.h> /*calloc-function*/
#include <string.h> /*memcpy-function*/
* Routine:
*
    initUserProjection
* Purpose:
    Initialize the user's preferred
```

```
projection. The programmer has access to
    the file projection.data in current
*
    directory which the user controls.
*
* Parameters:
*
    int userProjectionNumber (input)
    This is the number found in
*
    projection.data
*
    where the first line looks like this:
*
    sharedlib 4
    In this case userProjectionNumber will be
*
*
    4.
* Return values:
*
    0 on success, -1 on error.
* References:
*
    The Component Interface
    Doucument: Neptune/UserProjections.
*
* Changes:
int initUserProjection(int
userProjectionNumber)
{
 switch (userProjectionNumber){
 case 1:
   break;
 default:
   return -1;
 }/*switch*/
 return 0;
}/*initUserProjection*/
* Routine:
*
    getUserProjectionName
* Purpose:
*
    Get the name to display in the
    menus for this user projection.
*
* Parameters:
* int userProjectionNumber (input):
*
    This is the number found in
*
    projection.data
*
    where the first line looks like this:
    sharedlib 4
*
*
    In this case userProjectionNumber will
```

```
be 4.
*
* Return values:
    A dynamically allocated character array
*
    containing the name of the projection to
*
*
    use. On error NULL is returned.
* References:
    The Component Interface Doucument:
*
*
    Neptune/UserProjections.
* Changes:
char *getUserProjectionName(int
userProjectionNumber)
{
 char *p;
  if ((p = calloc(20, sizeof(char)))==NULL)
return NULL;
 switch (userProjectionNumber){
 case 1:
   memcpy(p,"User Projection 1",18);
   break;
 default:
   free(p);
   return NULL;
  }/*switch*/
  return p;
}/*getUserProjectionName*/
* Routine:
    userProjectionLatLongToNorthEast
*
* Purpose:
*
    This routine is called to get the
*
    projection coordinates from the
*
    geographic coordinates.
* Parameters:
* int userProjectionNumber (input):
    See initUserProjection.
*
* double latitude, double longitude (input):
*
    latitude and longitude in decimal
*
    degrees.
* double *north, double *east (input/output):
    pointers to doubles where to store the
*
*
    projection coordinates north and east
```

```
(in meters).
*
* Return values:
    0 on success, -1 on error.
*
* References:
    The Component Interface Doucument:
    Neptune/UserProjections.
*
* Changes:
int userProjectionLatLongToNorthEast(int
userProjectionNumber,
    double latitude, double longitude,
    double *north, double *east)
{
 if (north == NULL || east == NULL) return
-1;
 switch (userProjectionNumber){
 case 1:
   break;
 default:
   return -1;
 }/*switch*/
 return 0;
}/*userProjectionLatLongToNorthEast*/
* Routine:
*
    userProjectionNorthEastToLatLong
* Purpose:
    This routine is called to get the
*
    geographic coordinates from the
*
    projection coordinates.
*
* Parameters:
* int userProjectionNumber (input):
*
    See initUserProjection.
* double north, double east (input):
    Projection coordinates (meters)
*
* double *latitude, double *longitude
* (input/output):
   Pointers to doubles where to store the
*
*
   geographic coordinates latitude and
*
   longitude (desimal degrees).
* Return values:
   0 on success, -1 on error.
```

```
* References:
*
   The Component Interface Doucument:
   Neptune/UserProjections.
*
* Changes:
int userProjectionNorthEastToLatLong(int
userProjectionNumber,
    double north, double east,
    double *latitude, double *longitude)
{
 if (latitude == NULL || longitude == NULL)
return -1;
 switch (userProjectionNumber){
 case 1:
   break;
 default:
   return -1;
 }/*switch*/
   return 0;
}/*userProjectionNorthEastToLatLong*/
```

The makefile on a DEC OSF1 UNIX workstation looks like this:

```
# $Id: Makefile,v 1.1 1997/01/23 11:12:07 tp
Exp $
# Makefile to create libsharedProj.so.
#
# 23 Jan 1997, Terje Pedersen
#
# Copyright: Kongsberg Simrad AS
#
#
.PHONY: install lib clean
CC=cc
LD=1d
LDFLAGS=-shared -no archive
INSTALL=/usr/local/lib
dummyRoutines.o: dummyRoutines.c
@$(CC) -c $<
lib: dummyRoutines.o
```

```
@$(LD) $(LDFLAGS) -o libsharedProj.so
dummyRoutines.o -lc
install: lib
@cp libsharedProj.so
$(INSTALL)/libsharedProj.so
@cp dummyRoutines.h
$(NEPTUNEHOME)/include/simrad/.
@ls -l $(INSTALL)/libsharedProj.so
@ls -l
$(NEPTUNEHOME)/include/simrad/dummyRoutines.h
clean:
@rm dummyRoutines.o libsharedProj.so
```

The makefile is probably very similar on other platforms.

Notes

There are some restrictions on shared libraries on every platform. You should be aware of this. When upgrading Kongsberg Maritime Software the customer's shared library should be reinstalled to make sure it is the one being used. You are encouraged to use the initialisation routine to test that the projection is working.

Heights are not used in Kongsberg Maritime's Graphic system. It is not necessary in the projections since the height varies very little within one survey that a fixed height will suffice. This can be a parameter in \$PROCHOME/<survey>/projection.data that you can read at startup time and use in the projections internally.

Blank page

12 SPARE PARTS

12.1 Overview

This chapter contains an illustrated presentation of the spare parts available for the EM 300 multibeam echo sounder. All the parts are not listed her, only those defined as Line Replaceable Units (LRU) to be changed by the on-board maintenance personnel.

12.2 Spares data presentation

Spares table

The parts are presented in a table format ("5008") specified by the Royal Norwegian Navy.

10 SNo	11 Drawing ref	13 Prod.p.no	15 Article name	18 Price	21 Unit	22 Quantity
	12 Other ref.	14 TM part.no	16 Technical data	19 TM code	26 User- spares	27 Base spares
	24 Date	17 NATO No		23 Status	20 Comp	25 Ser.no.
1	Fig.1 - 05.03.97	290-085827 - -	Powec Power Supply PMP 4M.02	- - -	EA 0 C	1 0 N/A

An example is shown below.

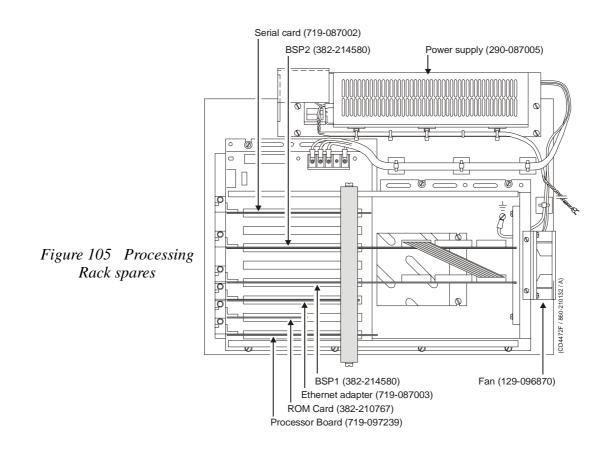
The parts information in this table also conforms to the civilian standard **NS 5820** specified by the Norwegian Standardisation Society (Norges Standardiserings Forbund).

Parts list codes

These are the code descriptions for the information in the table.

Key codes to the parts list			
No	Caption	Description	
10	Serial no.	Row number in list.	
11	Drawing no. & item no.	The number of the drawing, and the position on that drawing, of the part.	
12	Other references	Any other applicable references are included here.	
13	Producer's part no.	The part number to be used when ordering spares from Kongsberg Maritime AS.	
14	True manufacturer's part no.	Part number designated by manufacturer of part. Will be same as (13) if part is manufactured or assembled by Kongsberg Maritime AS.	
15	Article name	The name of the unit or part.	
16	Technical data	Any additional technical information which may be relevant.	
17	NATO catalogue no.	The NATO stock number will be added where appropriate.	
18	Currency/unit price	Price of the part, and the applicable currency	
19	True manufacturer's code	This is a code number to identify the suppliers of the parts to enableyou to order directly from the suppliers in an emergency.	
20	Component	Component definition.	
		C = a component which cannot be broken down into smaller units.	
		P = a part which may contain separately replaceable components.	
		S = a set of parts.	
21	Unit	The SI units applicable to the component. E.G. m = metric units for bolts etc.	
22	Quantity	The total number of that particular part included in the system.	
23	Status	Code for use by the Navy. Will be completed by the Navy	
24	Date	This is the date the row was last updated.	
25	Serial number	The component serial number where applicable.	
26	User spares	The suggested number of spares to be held by the user.	
27	Spares at base	The suggested number of spares to be held at the user's home base.	

12.3 Transceiver Unit 125 - 210131


Overview

The line replaceable units in the EM 300 Transceiver Unit are:

- Circuit boards
- Capacitor battery
- Power supplies
- Fan drawers

Processing Rack

The spare parts in The Processing Rack are those circuit boards used in the chassis.

SNo	Drawing ref	Prod.p.no	Article name	Price	Unit	Quantity
	Other ref.	TM part.no	Technical data	TM code	User- spares	Base spares
	Date	NATO No	Other information	Status	Comp	Ser.no.
1	Fig.105 - 13.11.03	382-210767 - -	ROM Card	- - -	EA 1 C	1 0 N/A
2	Fig.105 13.11.03	719-097239 - -	Control Processor Unit (CPU) Board Commercial item	- -	EA 0 C	1 0 N/A
3	Fig.105 13.11.03	382-214580 - -	Beamformer & Signal Processor	- - -	EA 0 C	2 1 N/A
4	Fig.105 13.11.03	719-087002 - -	Serial card Commercial item	- - -	EA 0 C	1 1 N/A
5	Fig.105 13.11.03	719-087003 - -	Ethernet Adapter Commercial item	- - -	EA 0 C	1 1 N/A

6	Fig.105	290-087005	Power supply	-	EA	1
	-	-		-	0	1
	13.11.03	-	Commercial item	-	С	N/A
7	Fig.105	129-096870	Fan, axial, 12 Vdc	-	EA	2
		-		-	0	1
	13.11.03	-	Commercial item	-	С	N/A

Receiver Rack

The following spare parts are those circuit boards and power supplies used in the Receiver Rack.

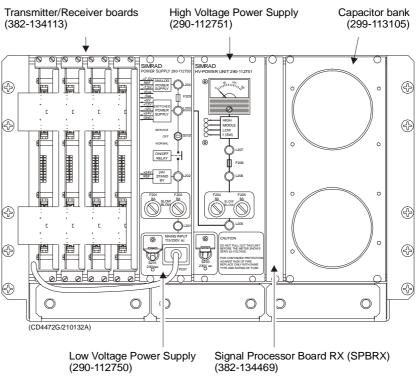


Figure 106 Receiver Rack spares

SNo	Drawing ref	Prod.p.no	Article name	Price	Unit	Quantity
	Other ref.	TM part.no	Technical data	TM code	User- spares	Base spares
	Date	NATO No	Other information	Status	Comp	Ser.no.
1	Fig.106 - 13.11.03	382-134113 - -	Transmitter / Receiver Board	- - -	EA 0 C	4 1 N/A
2	Fig.106 - 13.11.03	290-112750 - -	Low Voltage Power Supply	- - -	EA 0 C	1 1 N/A
3	Fig.106 - 13.11.03	290-112751 - -	High Voltage Power Supply	- - -	EA 0 C	1 1 N/A
4	Fig.106 - 13.11.03	382-134469 - -	Signal Processor Board RX	- - -	EA 0 C	1 1 N/A
5	Fig.106 - 13.11.03	299-113105 - -	Capacitor Bank	- - -	EA 0 C	1 1 N/A

Transmitter Rack

The following spare parts are those circuit boards used in the Transmitter Rack.

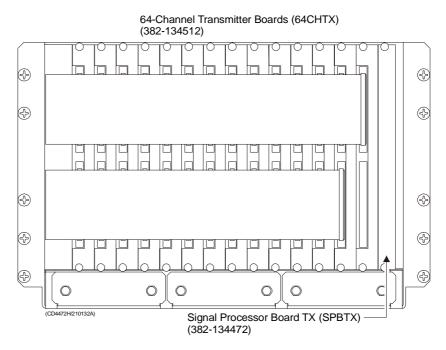


Figure 107 Transmitter Rack spares

SNo	Drawing ref	Prod.p.no	Article name	Price	Unit	Quantity
	Other ref.	TM part.no	Technical data	TM code	User- spares	Base spares
	Date	NATO No	Other information	Status	Comp	Ser.no.
1	Fig.107 - 13.11.03	382-134472 - -	Signal Processor Board TX	- - -	EA 0 C	1 1 N/A
2	Fig.107 - 13.11.03	382-134512 - -	64-Channel Transmitter Board	- - -	EA 0 C	1 1 N/A

12.4 Transceiver Unit 125 - 211293

Overview

The line replaceable units in the EM 300 Transceiver Unit are:

- Circuit boards
- Capacitor battery
- Power supplies
- Fans

Processing Rack

The spare parts in The Processing Rack are those circuit boards used in the chassis.

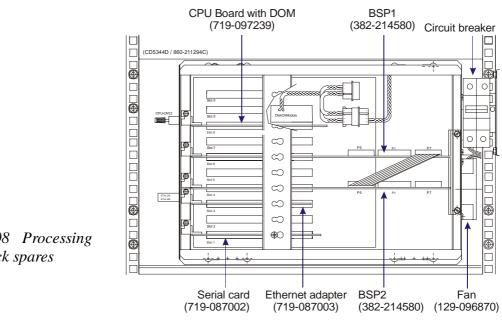
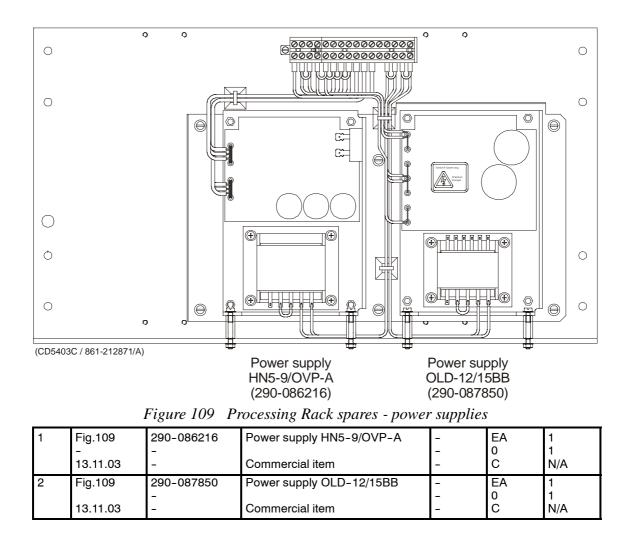



Figure 108 Processing Rack spares

SNo	Drawing ref	Prod.p.no	Article name	Price	Unit	Quantity
	Other ref.	TM part.no	Technical data	TM code	User- spares	Base spares
	Date	NATO No	Other information	Status	Comp	Ser.no.
1	Fig.108 -	719-097597 -	DiskOnModule (DOM)		EA 1	1 0
	13.11.03	-		-	С	N/A
2	Fig.108	719-097239 -	Control Processor Unit (CPU) Board		EA 0	1 0
	13.11.03	-	Commercial item	-	С	N/A
3	Fig.108	382-214580 -	Beamformer & Signal Processor	-	EA 0	2
	13.11.03	-		-	Č	N/A
4	Fig.108	719-087002	Serial card	-	EA	1
	13.11.03	-	Commercial item	-	0 C	I N/A
5	Fig.108	719-087003	Ethernet Adapter	-	EA 0	1
	13.11.03	-	Commercial item	-	C	I N/A
6	Fig.108	129-096870	Fan, axial, 12 Vdc	-	EA	2
	13.11.03	-	Commercial item	-	0 C	I N/A

SNo	Drawing ref	Prod.p.no	Article name	Price	Unit	Quantity
	Other ref.	TM part.no	Technical data	TM code	User- spares	Base spares
	Date	NATO No	Other information	Status	Comp	Ser.no.

Receiver Rack

The following spare parts are those circuit boards and power supplies used in the Receiver Rack.

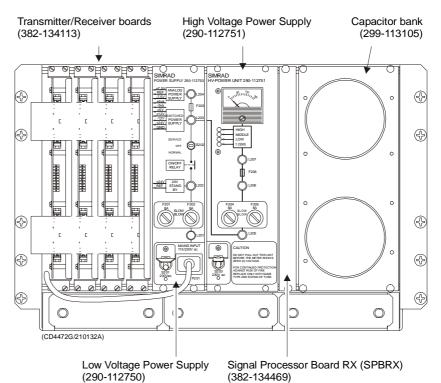


Figure 110 Receiver Rack spares

SNo	Drawing ref	Prod.p.no	Article name	Price	Unit	Quantity
	Other ref.	TM part.no	Technical data	TM code	User- spares	Base spares
	Date	NATO No	Other information	Status	Comp	Ser.no.
1	Fig.110 - 13.11.03	382-134113 - -	Transmitter / Receiver Board	- - -	EA 0 C	4 1 N/A
2	Fig.110 - 13.11.03	290-112750 - -	Low Voltage Power Supply	- - -	EA 0 C	1 1 N/A
3	Fig.110 - 13.11.03	290-112751 - -	High Voltage Power Supply	- - -	EA 0 C	1 1 N/A
4	Fig.110 - 13.11.03	382-134469 - -	Signal Processor Board RX	- - -	EA 0 C	1 1 N/A
5	Fig.110 - 13.11.03	299-113105 - -	Capacitor Bank	- - -	EA 0 C	1 1 N/A

Transmitter Rack

The following spare parts are those circuit boards used in the Transmitter Rack.

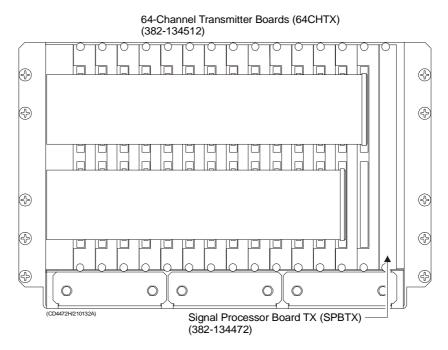
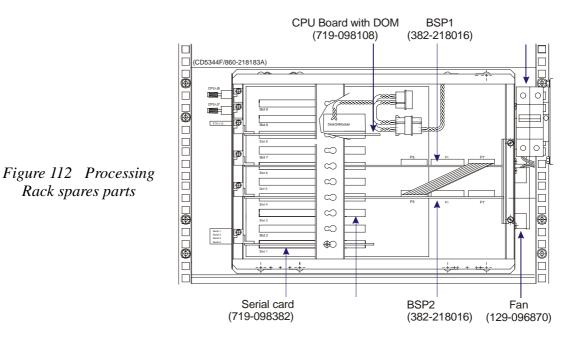


Figure 111 Transmitter Rack spares

SNo	Drawing ref	Prod.p.no	Article name	Price	Unit	Quantity
	Other ref.	TM part.no	Technical data	TM code	User- spares	Base spares
	Date	NATO No	Other information	Status	Comp	Ser.no.
1	Fig.111 - 13.11.03	382-134472 - -	Signal Processor Board TX	- - -	EA 0 C	1 1 N/A
2	Fig.111 - 13.11.03	382-134512 - -	64-Channel Transmitter Board	- -	EA 0 C	1 1 N/A

12.5 Transceiver Unit 125 - 218182


Overview

The line replaceable units in the EM 300 Transceiver Unit are:

- Circuit boards
- Capacitor battery
- Power supplies
- Fans

Processing Rack

The spare parts in The Processing Rack are those circuit boards used in the chassis.

SNo	Drawing ref	Prod.p.no	Article name	Price	Unit	Quantity
	Other ref.	TM part.no	Technical data	TM code	User- spares	Base spares
	Date	NATO No	Other information	Status	Comp	Ser.no.
1	Fig.108 - 13.11.03	719-098387 - -	DiskOnModule (DOM) flash disk (mounted on the CPU board)	- - -	EA 1 C	1 0 N/A
2	Fig.108 13.11.03	719-098108 - -	Control Processor Board (VIPer) Commercial item	- - -	EA 0 C	1 0 N/A
3	Fig.108 13.11.03	382-218016 - -	Beamformer & Signal Processor	- - -	EA 0 C	2 1 N/A
4	Fig.108 13.11.03	719-098382 - -	Serial card Commercial item	- - -	EA 0 C	1 1 N/A
5	Fig.108 13.11.03	129-096870 - -	Fan, axial, 12 Vdc Commercial item	- - -	EA 0 C	2 1 N/A
6	Fig.108 13.11.03	719-087748 - -	SDRAM (mounted on the CPU board) Commercial item	- -	EA 0 C	2 1 N/A

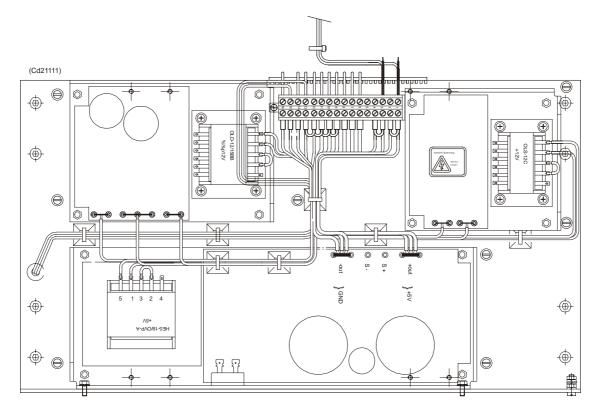
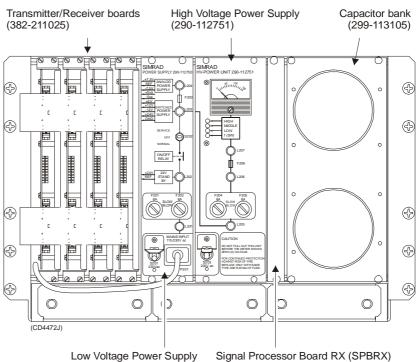



Figure 113 Processing Rack spares - power supplies

SNo	Drawing ref	Prod.p.no	Article name	Price	Unit	Quantity
	Other ref.	TM part.no	Technical data	TM code	User- spares	Base spares
	Date	NATO No	Other information	Status	Comp	Ser.no.
1	Fig.113 - 13.11.03	290-087843 - -	Power supply Commercial item	- - -	EA 0 C	1 1 N/A
2	Fig.113 13.11.03	290-087850 - -	Power supply OLD-12/15BB Commercial item	- - -	EA 0 C	1 1 N/A
3	Fig.113 13.11.03	290-098674 - -	Power supply Commercial item	- - -	EA 0 C	1 1 N/A

Receiver Rack

The following spare parts are those circuit boards and power supplies used in the Receiver Rack.

(290-112750) (382-134469)

Figure 114 Receiver Rack spares

SNo	Drawing ref	Prod.p.no	Article name	Price	Unit	Quantity
	Other ref.	TM part.no	Technical data	TM code	User- spares	Base spares
	Date	NATO No	Other information	Status	Comp	Ser.no.
1	Fig.114 - 02.12.03	382-211025 - -	Transmitter / Receiver Board	- - -	EA 0 C	4 1 N/A
2	Fig.115 - 02.12.03	290-112750 - -	Low Voltage Power Supply	- - -	EA 0 C	1 1 N/A
3	Fig.115 - 02.12.03	290-112751 - -	High Voltage Power Supply	- - -	EA 0 C	1 1 N/A
4	Fig.115 - 02.12.03	382-134469 - -	Signal Processor Board RX	- - -	EA 0 C	1 1 N/A
5	Fig.115 - 02.12.03	299-113105 - -	Capacitor Bank	-	EA 0 C	1 1 N/A

Transmitter Rack

The following spare parts are those circuit boards used in the Transmitter Rack.

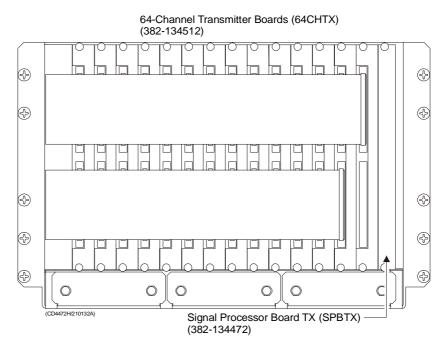


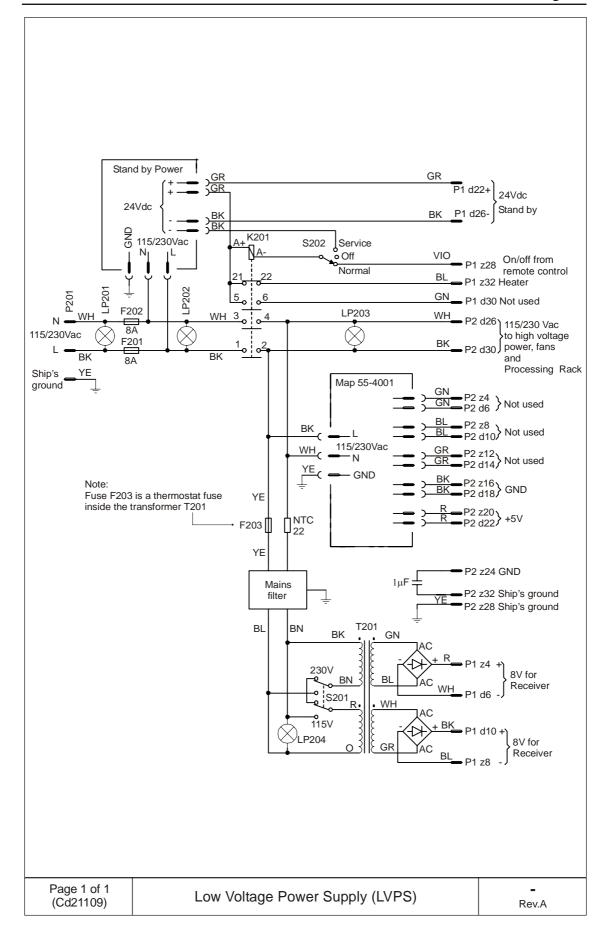
Figure 115 Transmitter Rack spares

SNo	Drawing ref	Prod.p.no	Article name	Price	Unit	Quantity
	Other ref.	TM part.no	Technical data	TM code	User- spares	Base spares
	Date	NATO No	Other information	Status	Comp	Ser.no.
1	Fig.115 - 13.11.03	382-134472 - -	Signal Processor Board TX	- - -	EA 0 C	1 1 N/A
2	Fig.115 - 13.11.03	382-134512 - -	64-Channel Transmitter Board	- - -	EA 0 C	1 1 N/A

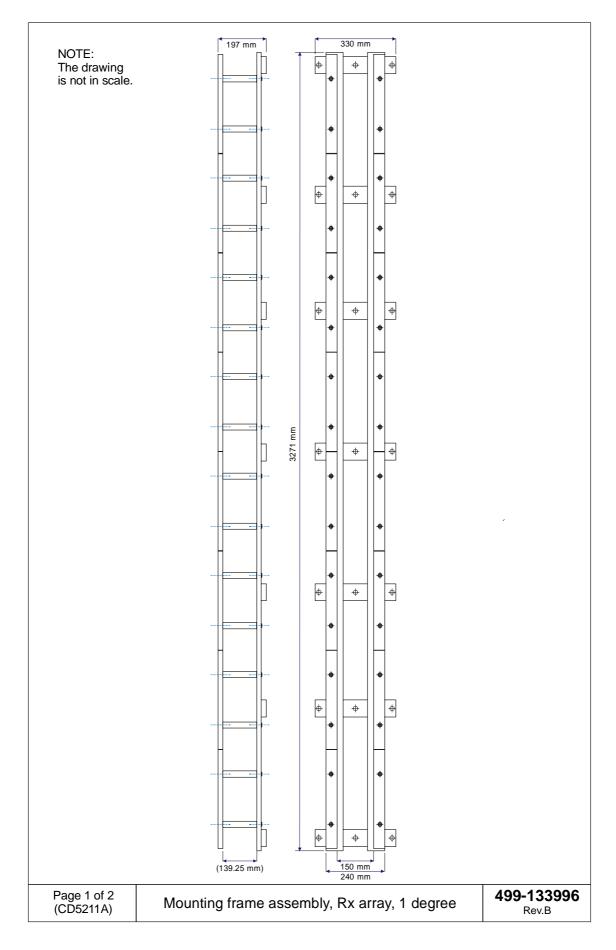
13 DRAWING FILE

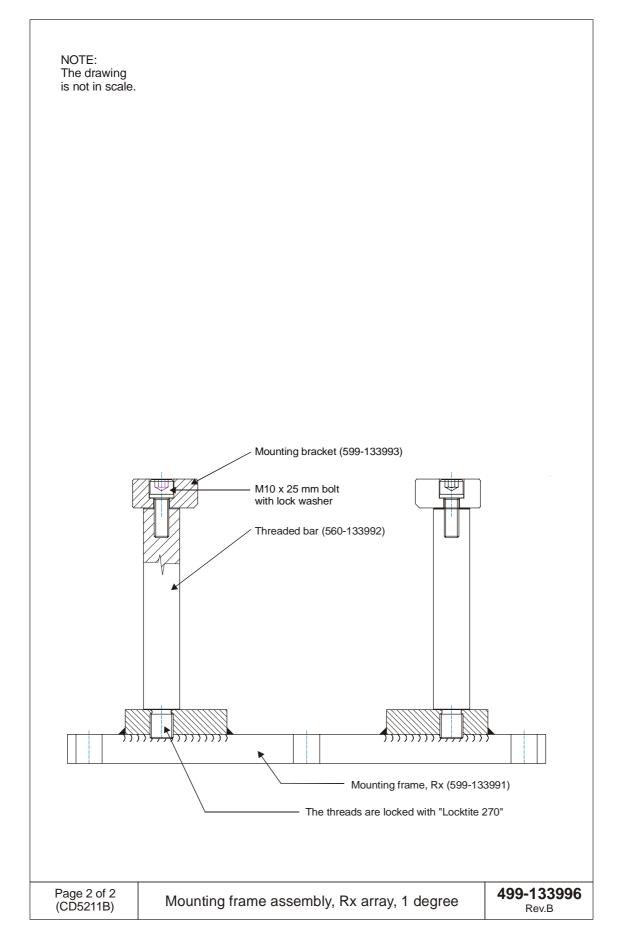
13.1 Introduction

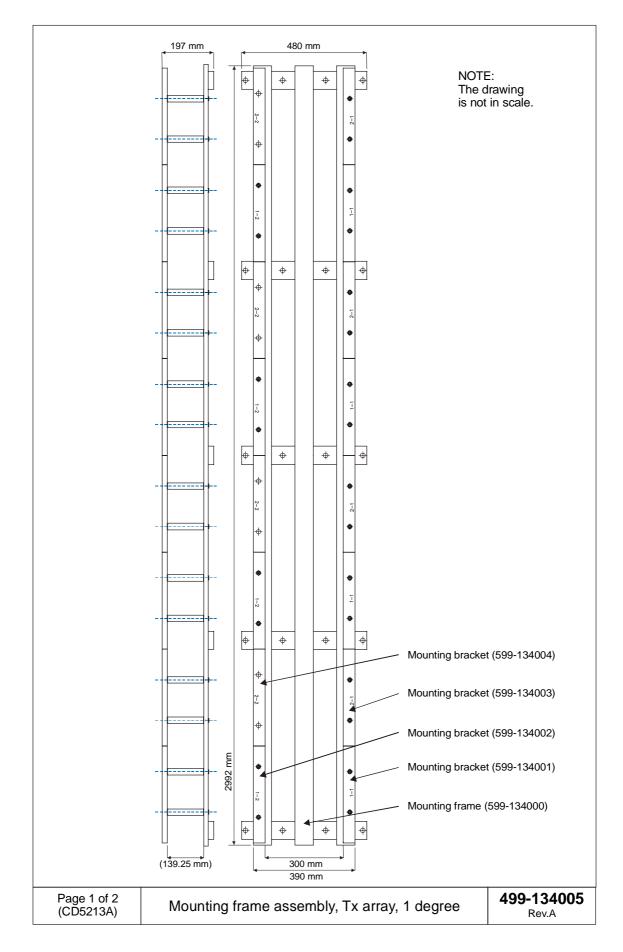
This chapter holds the drawings referenced to in the other sections of the manual.

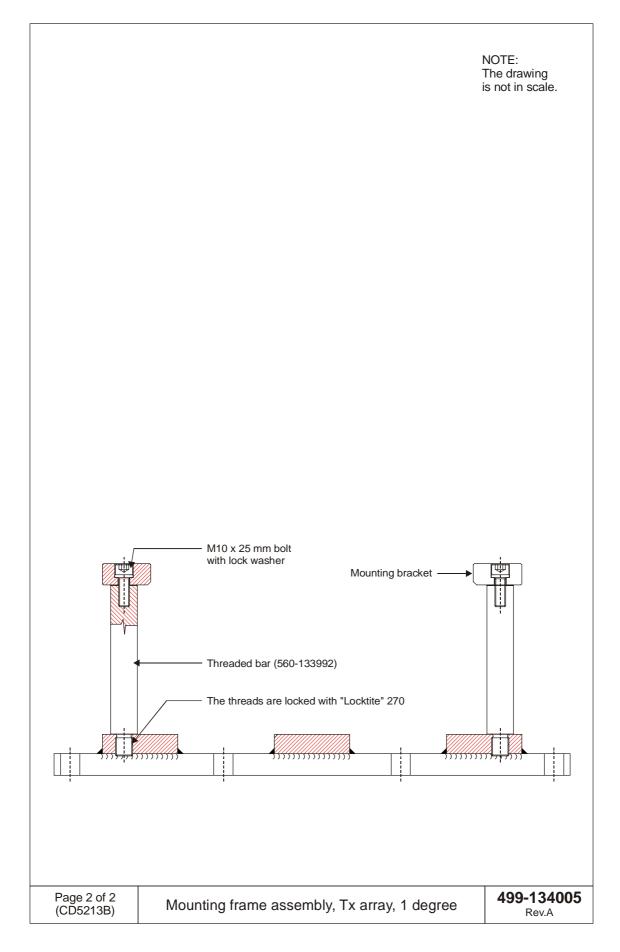

NoteThese drawings are available from Kongsberg Maritime on
electronic format (normally AutoCad) upon request. Please state
10-digit drawing number when ordering.

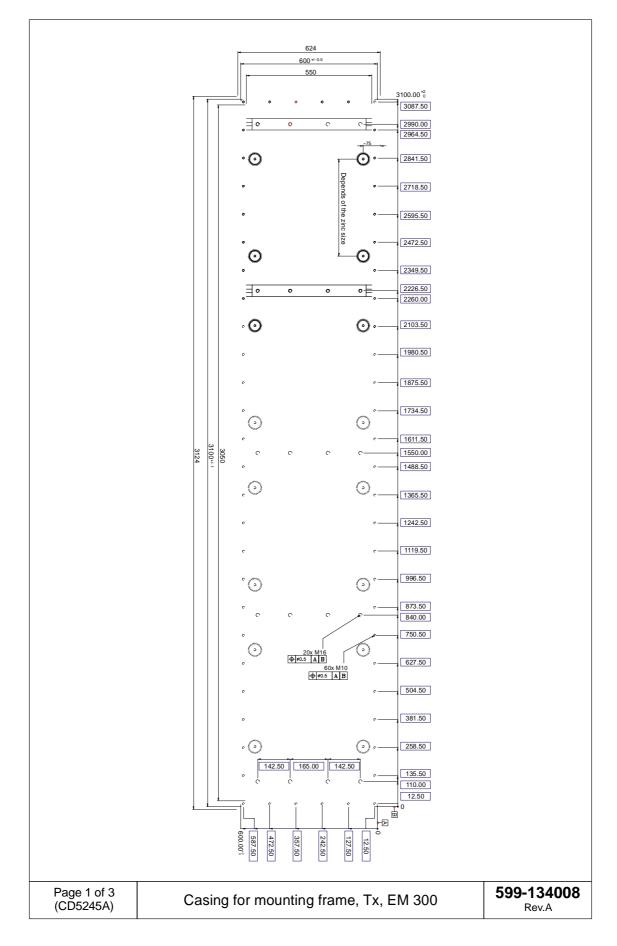
13.2 Drawing list

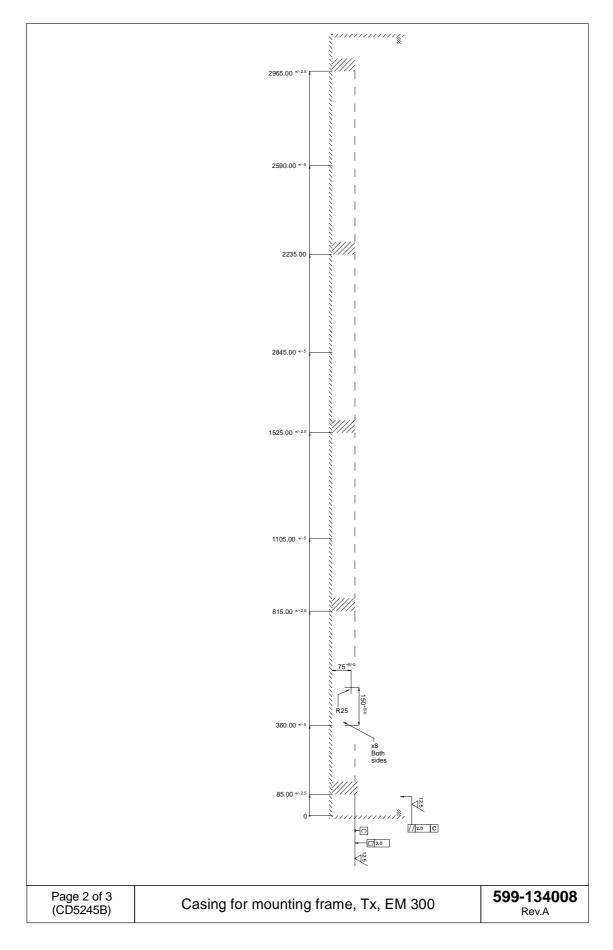

The following drawings are included (listed in numerical order):

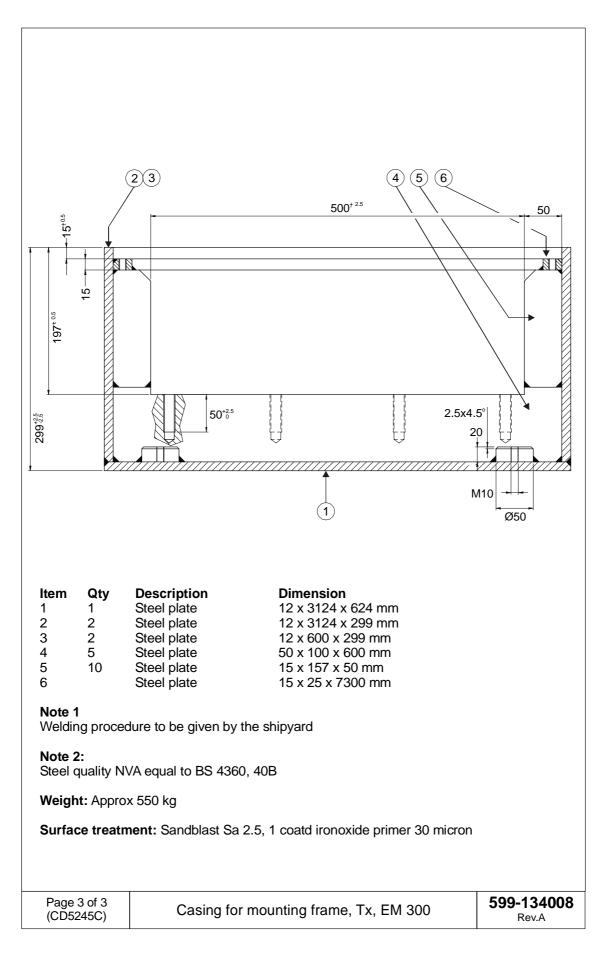

	1 211009 (Rev) Low Voltage Power Supply (page 387)
	2 499-133996 (Rev.B) Rx Mounting frame assembly, outline, 1 degree (page 388)
	 3 499-134005 (Rev.A) Tx Mounting frame assembly, outline, 1 degree (page 390)
	4 599-134008 (Rev.A) Casing for Tx Mounting frame, 1 degree (page 392)
Note	Only casing for a 1 degree system is shown. For other systems, the length of the casing must be adjusted to fit the mounting frame.
	5 599-134009 (Rev.A) Cover frame for casing, Tx array (page 395)
	6 599-134010 (Rev.A) Casing for mounting frame, Rx array (page 396)
Note	Only casing for a 1 degree system is shown. For other systems, the length of the casing must be adjusted to fit the mounting frame.
	7 830-210021 (Rev.A) Arrangement drawing for Tx array, 1 degree (page 399)
Note	Only the arrangement drawing for a 1 degree system is shown. For other systems, the length of the array must be adjusted.
	8 830-210025 (Rev.A) Arrangement drawing for Rx array, 1 degree (page 402)

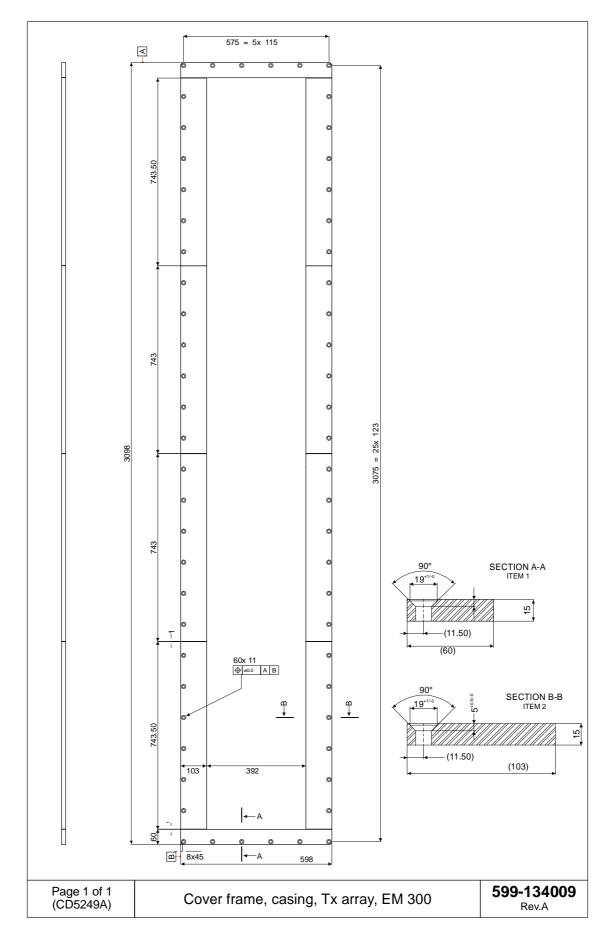

Note	Only the arrangement drawing for a 1 degree system is shown. For other systems, the length of the array must be adjusted.			
	9	860-210440 (Rev.A) Tx Mounting frame assembly, outline, 2 degrees (page 410)		
	10	860-210446 (Rev.A) Rx Mounting frame assembly, outline, 2 degrees (page 405)		
	11	860-210592 (Rev.A) Rx Mounting frame assembly, outline, 4 degrees (page 412)		
	12	821-211481 (Rev.A) EM 300A Transducer cable layout (page 407)		
	13	599-211475 (Rev.A) Outline dimensions, RX module (page 417)		

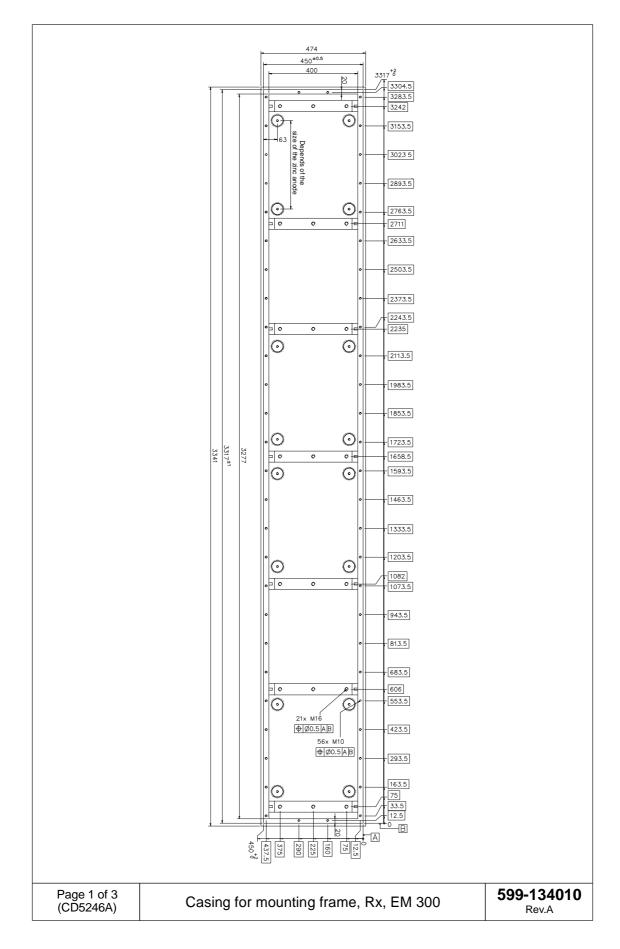


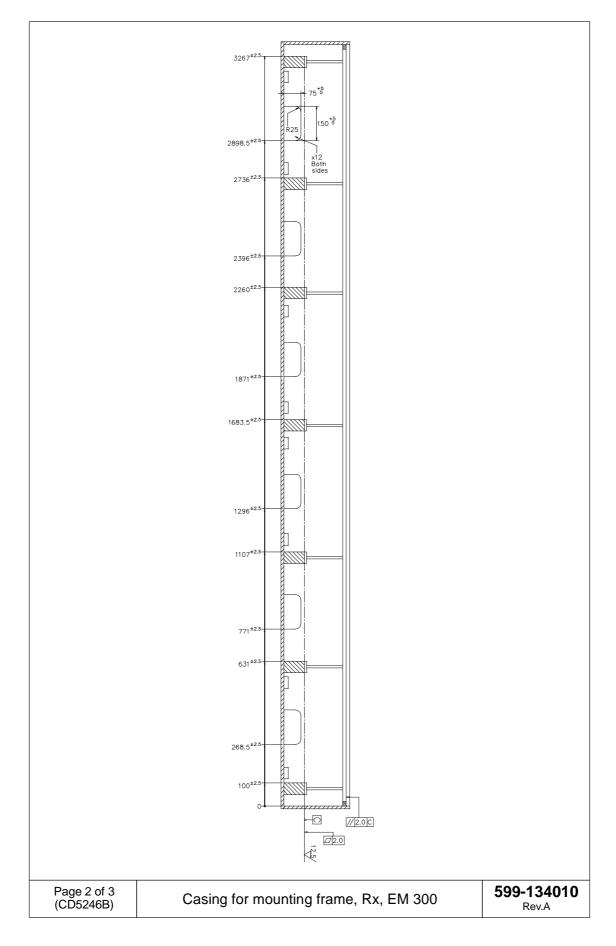

EM 300 Complete version

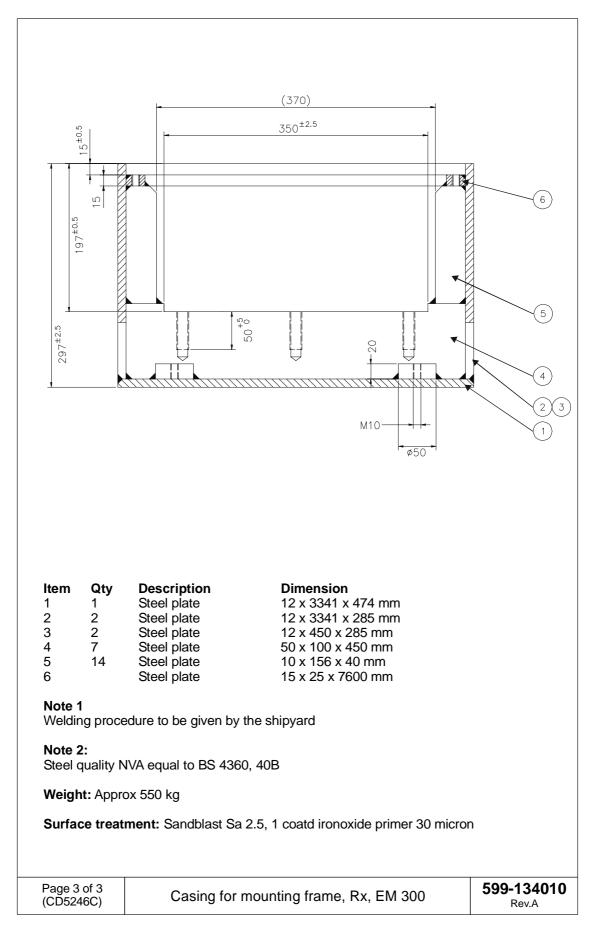


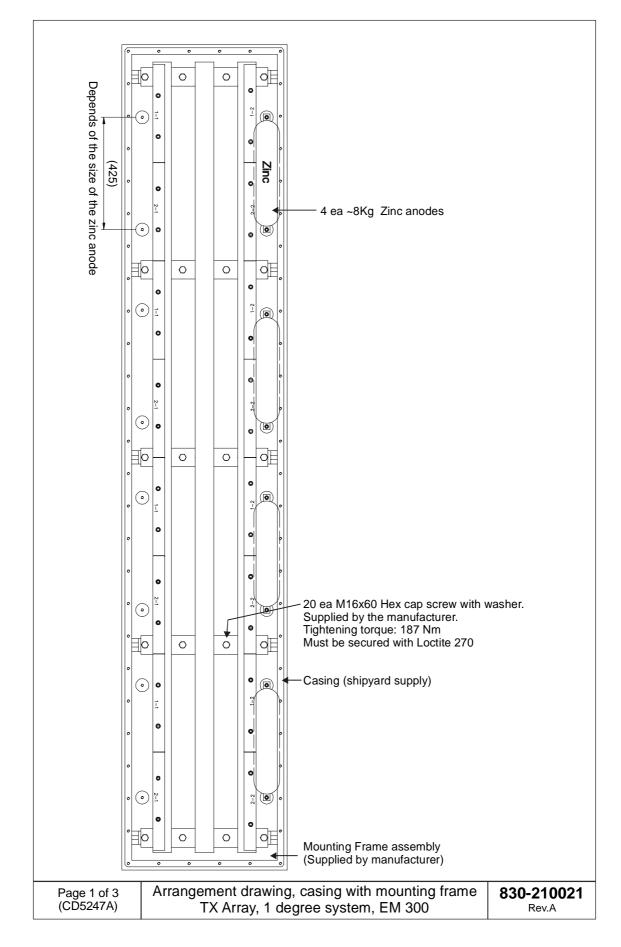


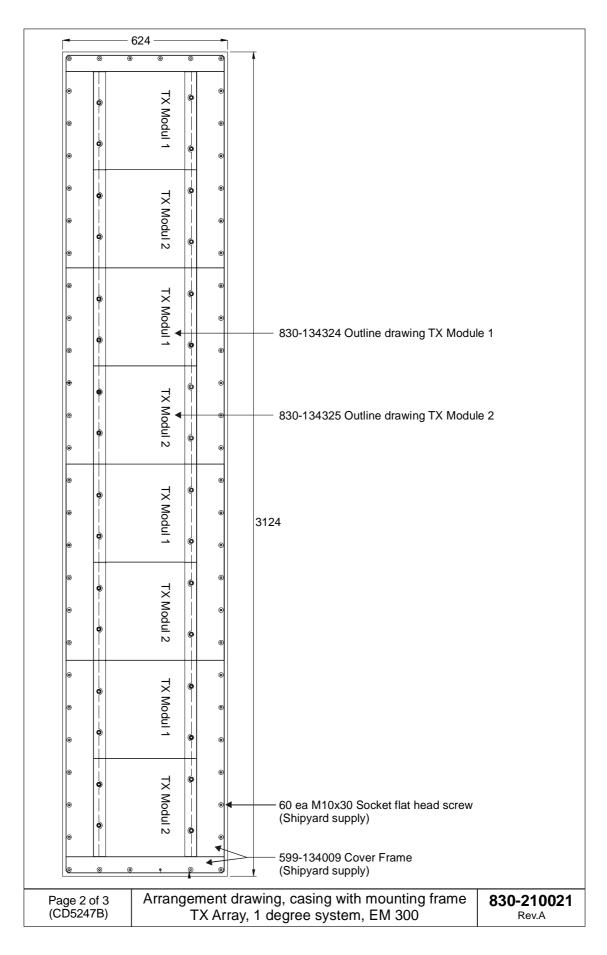


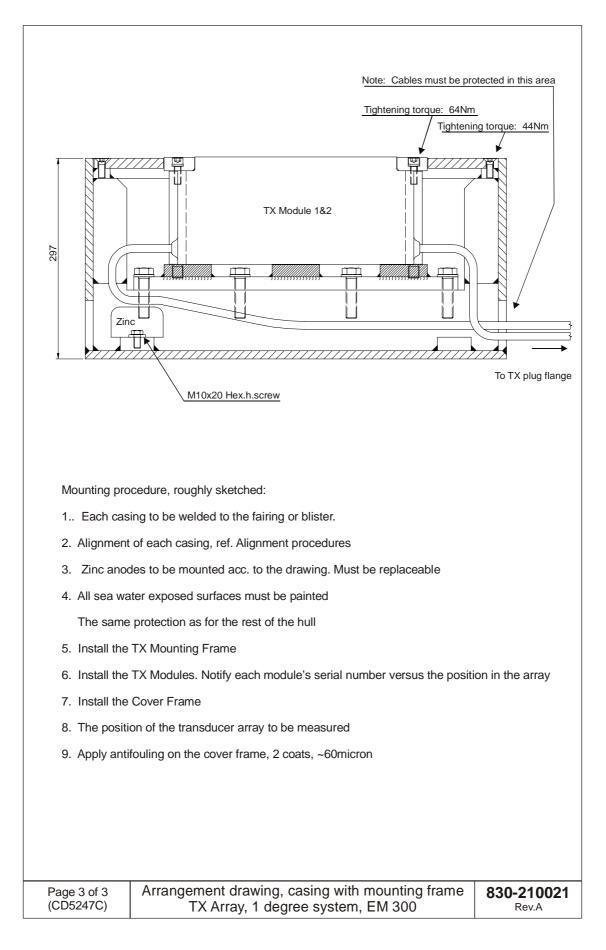


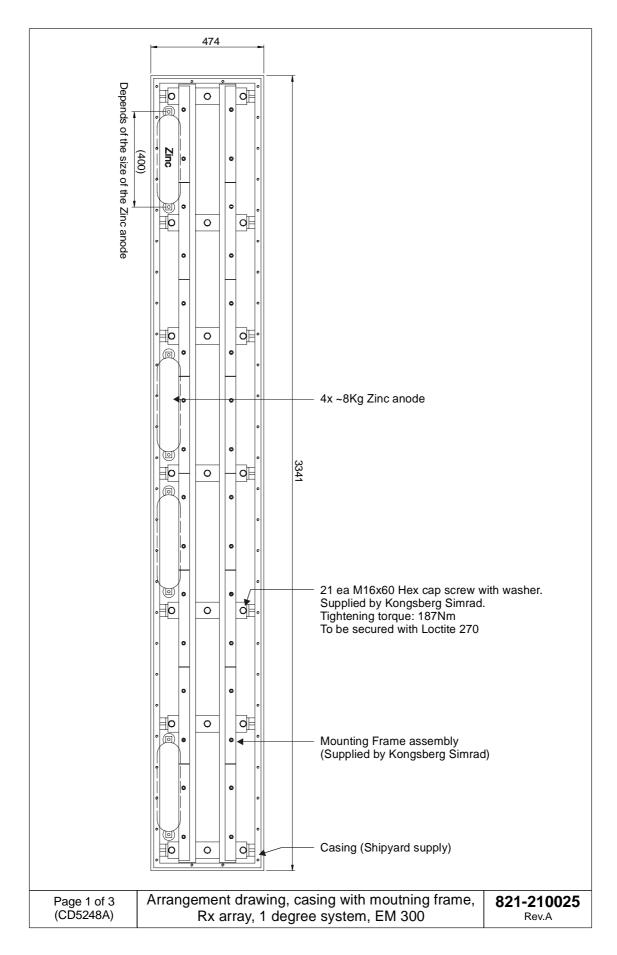


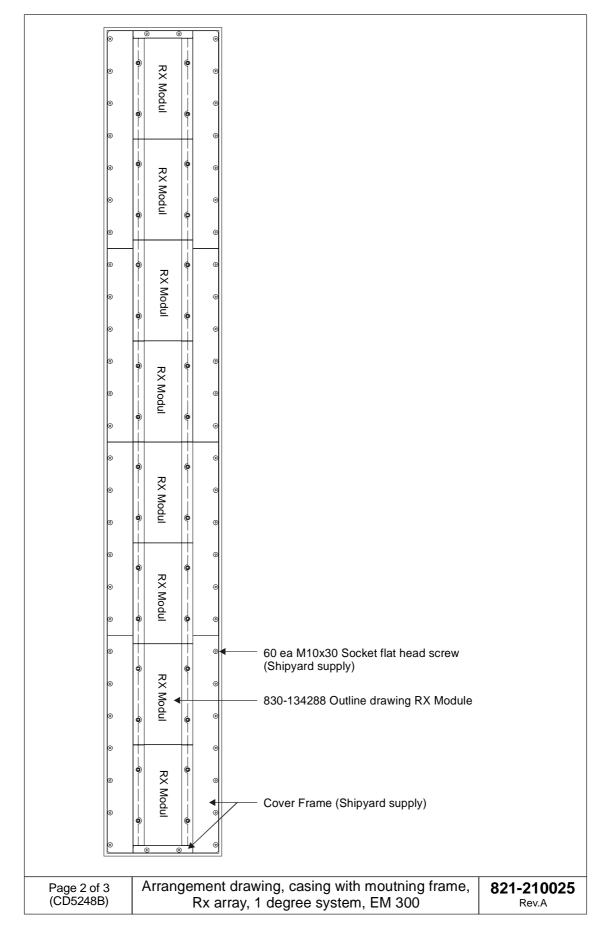


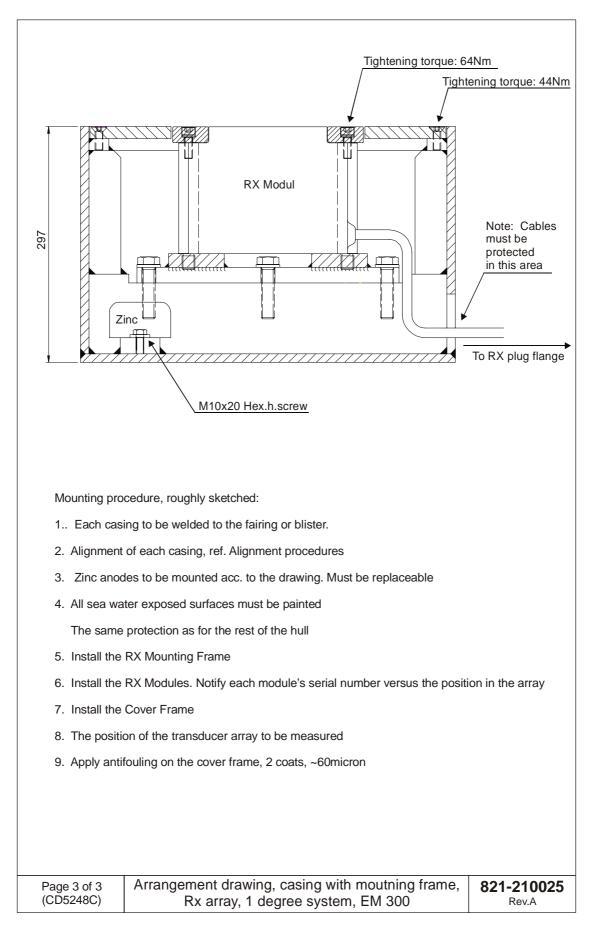


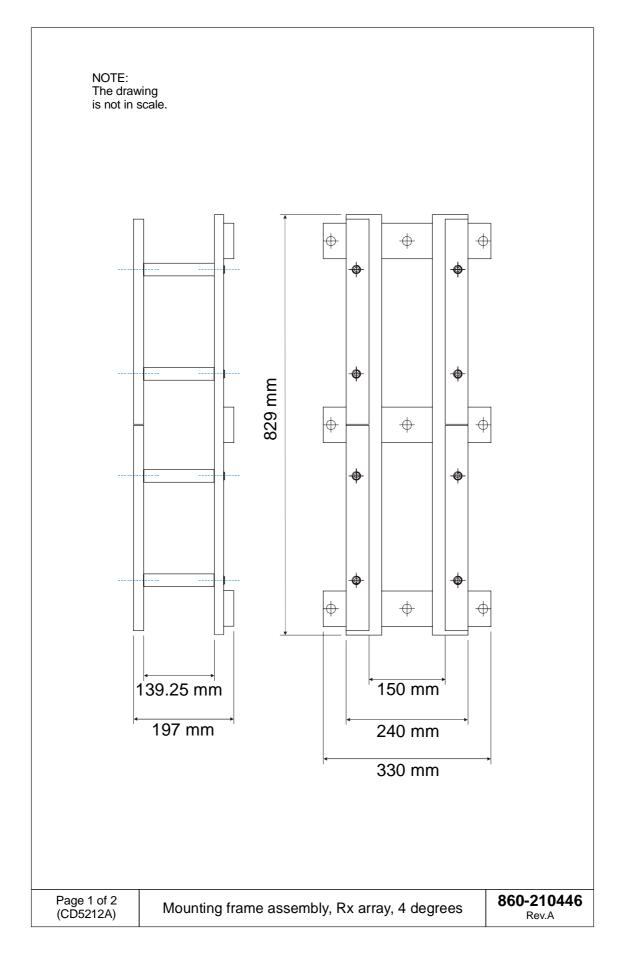


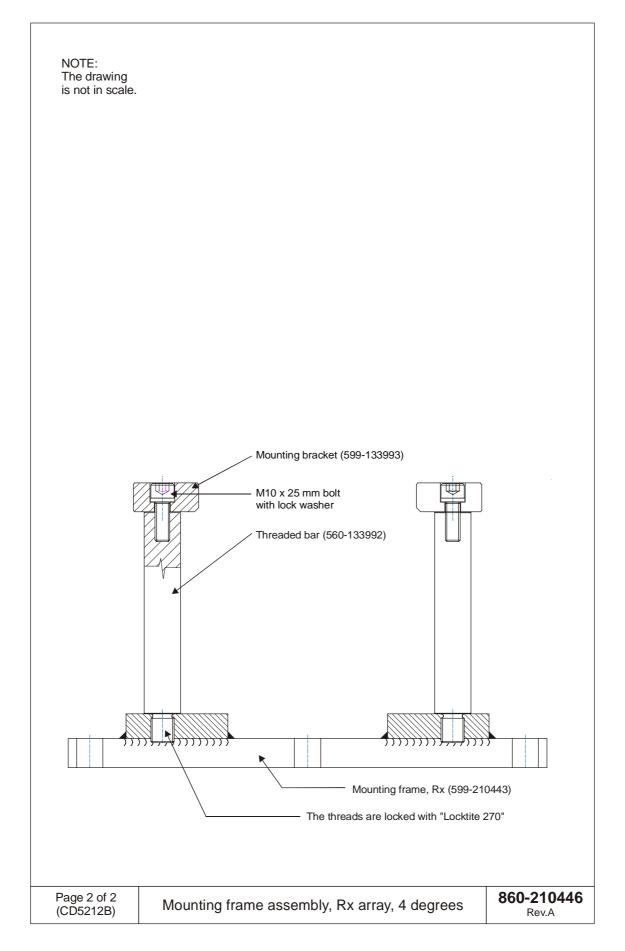


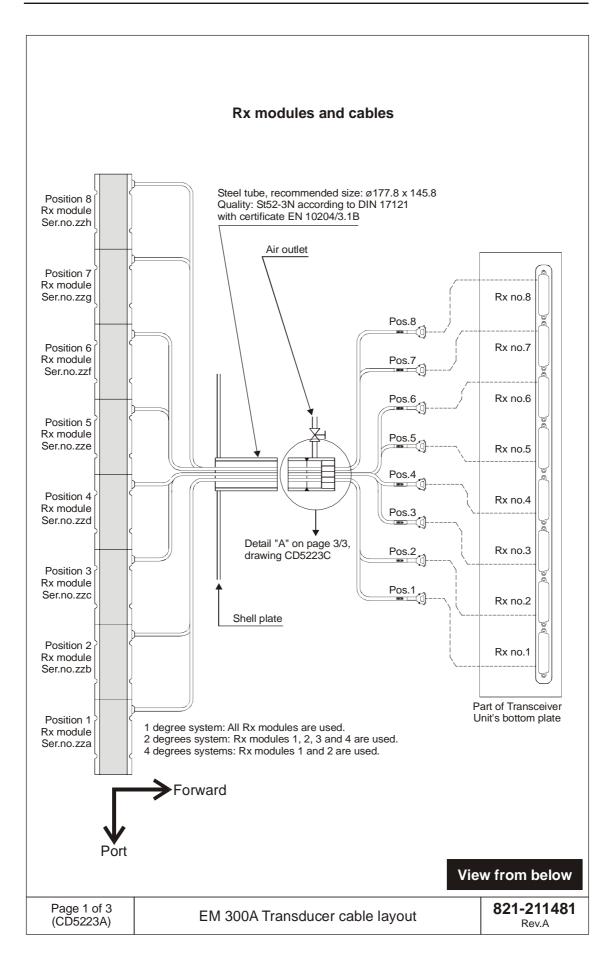


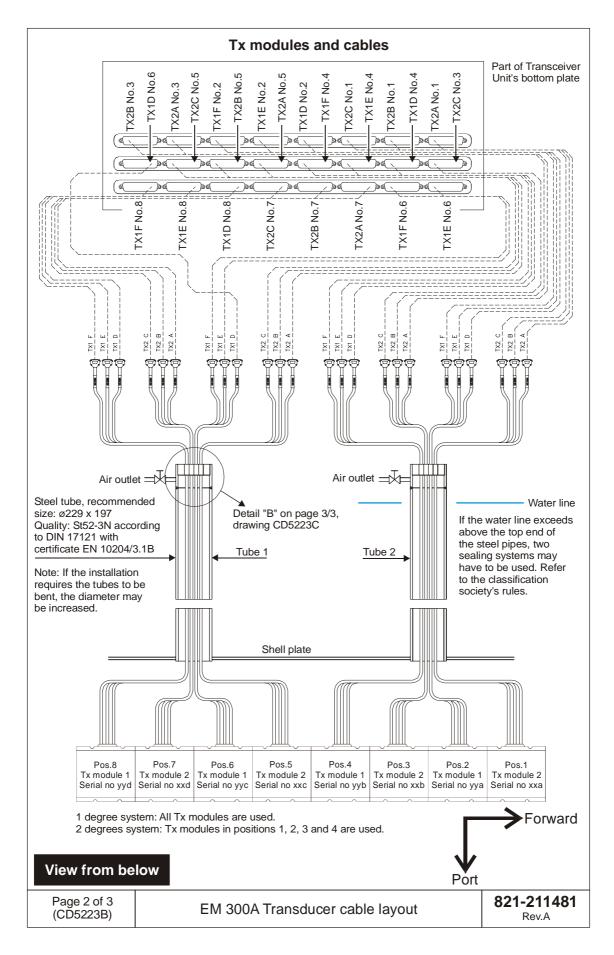


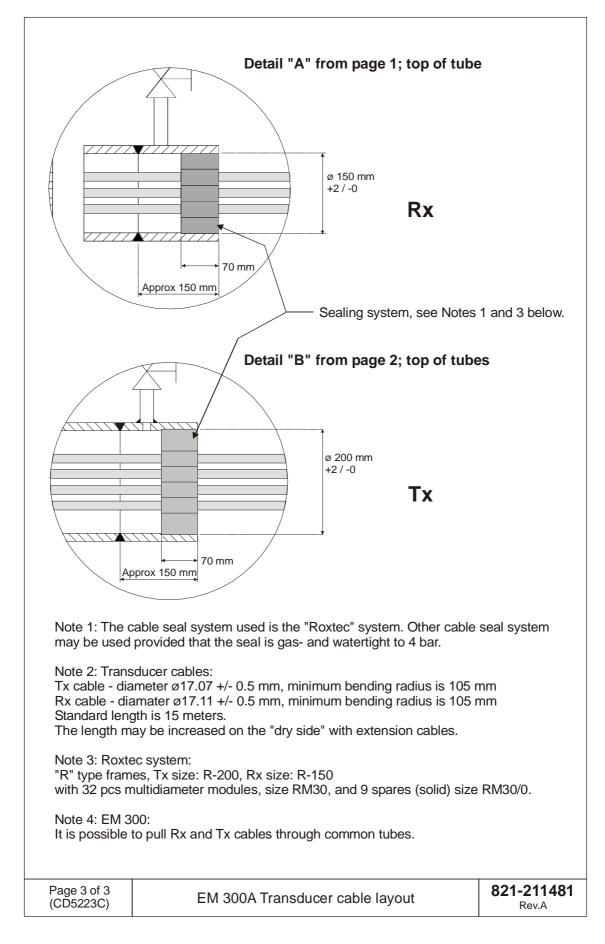


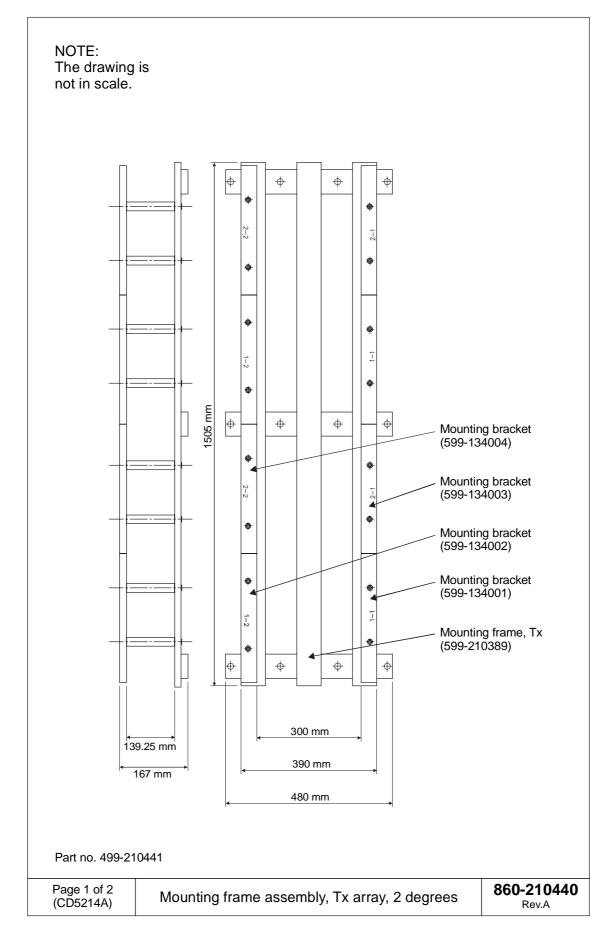


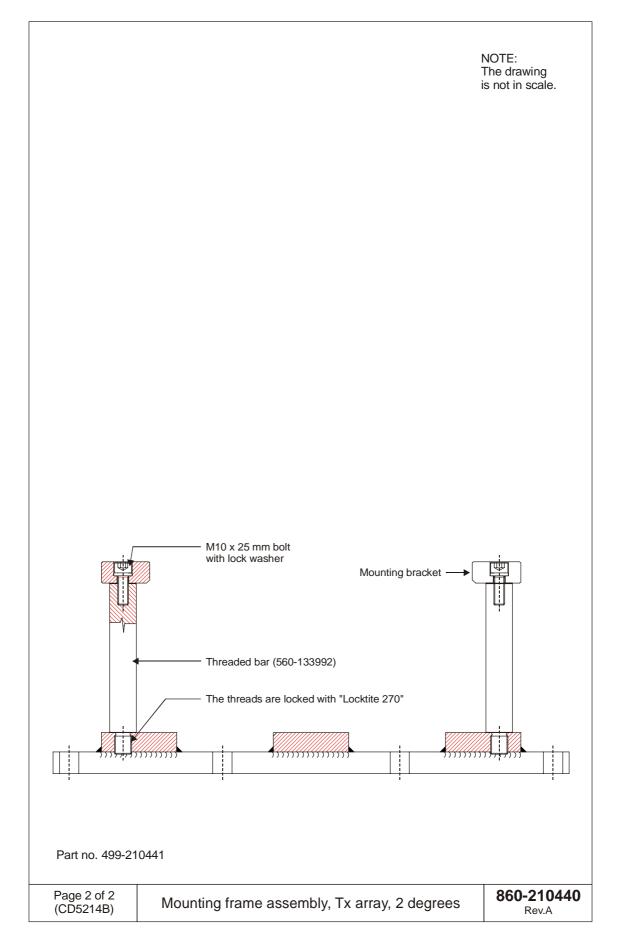


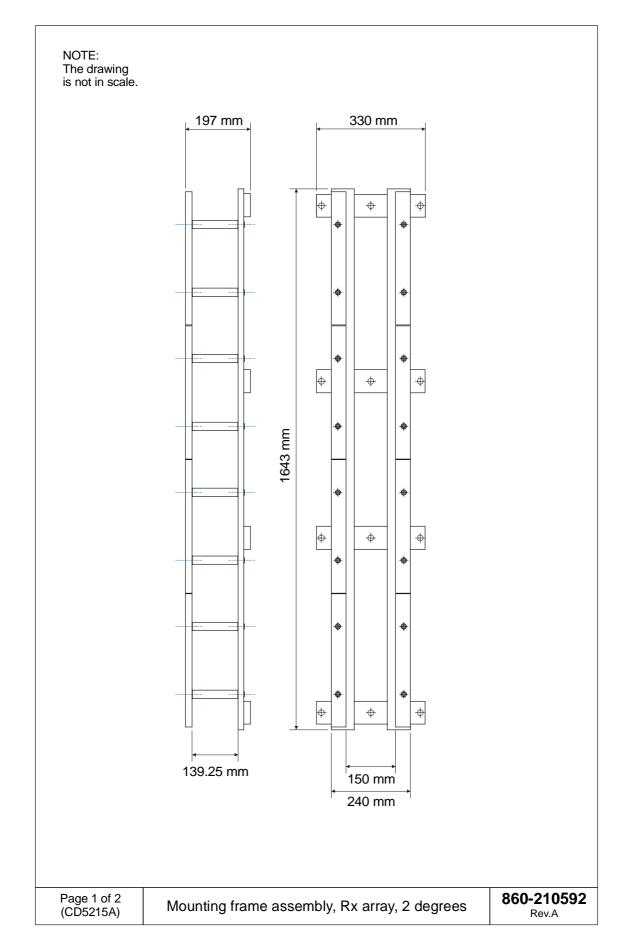


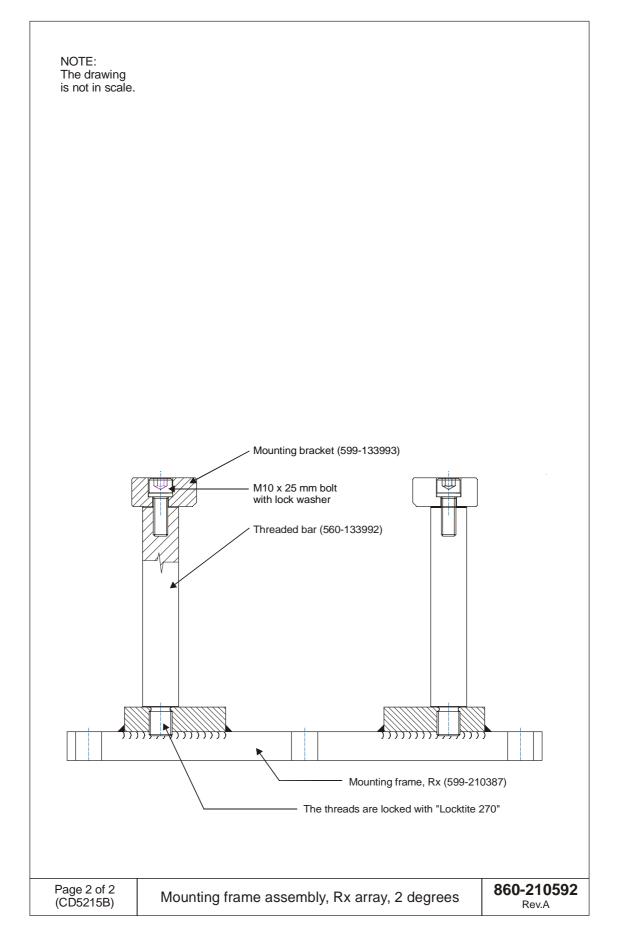


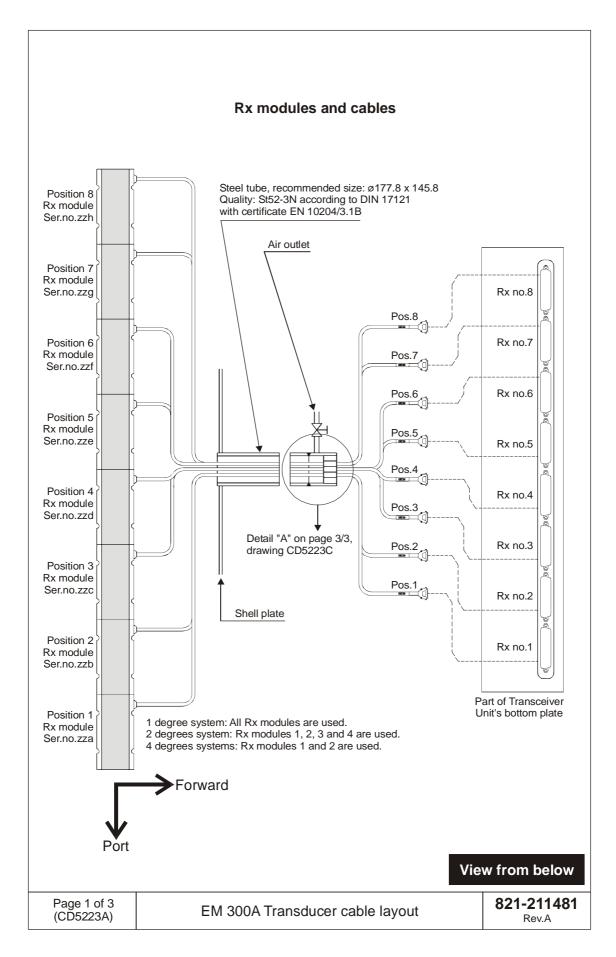


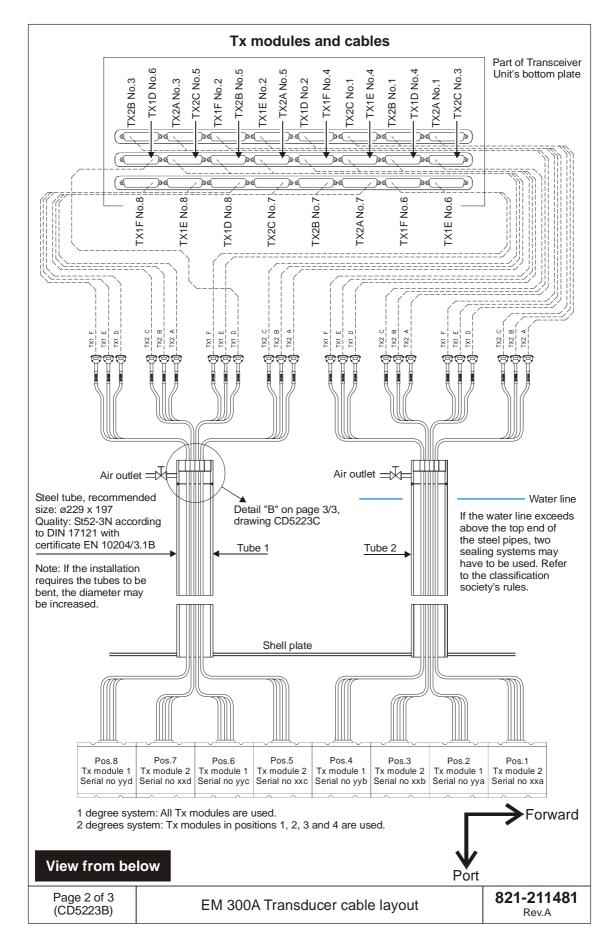


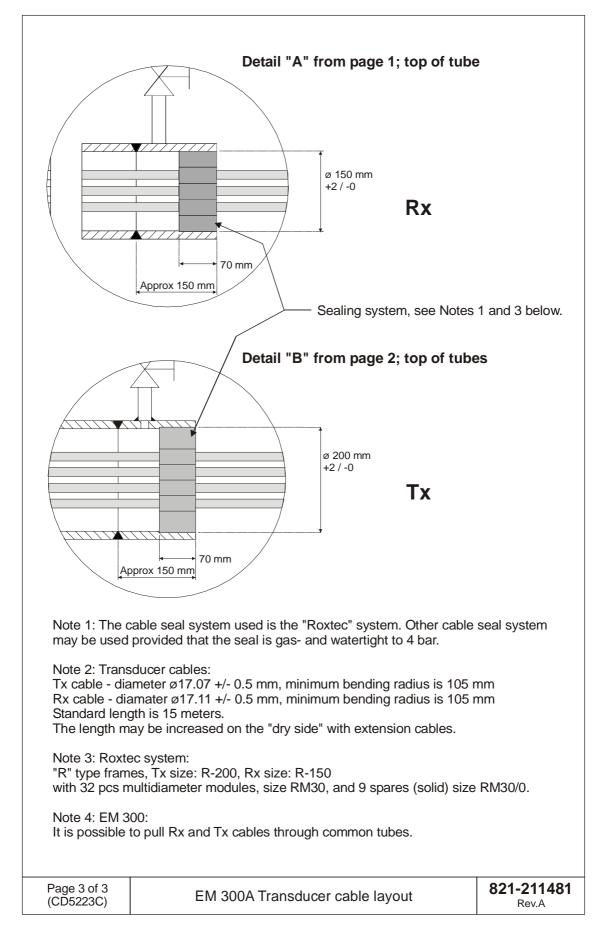


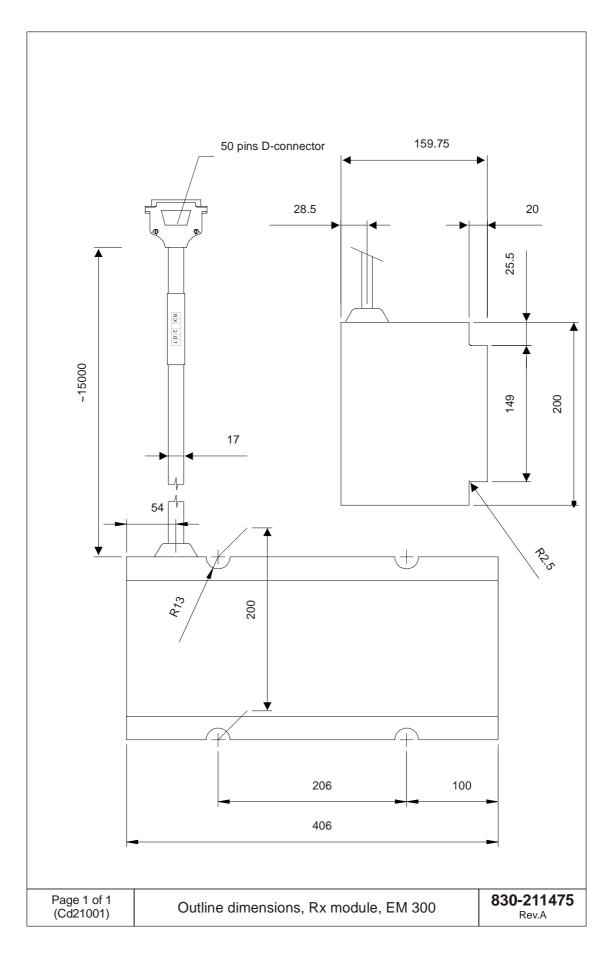












© 2003 Kongsberg Maritime ISBN

EM 300 Maintenance manual Complete version EM 300 Maintenance manual Complete version EM 300 Maintenance manual Complete version EM 300 Maintenance manual Complete version